Syllabi & Scheme of Examination

Learning Outcomes based Curriculum Framework

(LOCF)

For

DOCTORATE OF PHILOSHPHY

COMPUTER SCIENCE AND ENGINEERING

Department of Computer Science and Engineering Faculty of Engineering and Technology Chaudhary Devi Lal University Sirsa (Haryana) 2022

Table of Contents

- 1. About the Department
- 2. Learning Outcomes based Curriculum Framework
 - 2.1 Objectives of the programme
 - 2.2 Programme Outcomes (POs)
 - 2.3 Programme Specific Outcomes (PSOs)
 - 3. Programme Structure

1. About the Department

The institute, apart from establishing a robust teaching environment, is keen to facilitate and support cutting edge research in a variety of areas. This aspect will enable the students to acquaint themselves with the latest developments in their respective areas of study and to pursue their own research interests. The institute offers PhD programme in a wide range of areas in Computer Science & Engineering. The broad objective of the PhD programme is not only to keep pace with the expanding frontiers of knowledge but also to provide research training relevant to the present social and economic objectives of the country.

The academic programme leading to PhD degree is broad based and involves a minimum course credit requirement, comprehensive examination and synopsis seminar and thesis submission. The institute also encourages research in interdisciplinary areas through a system of joint supervision and interdepartmental group activities. The presence of highly motivated research oriented faculty members provides excellent opportunities for such programmes. The institute undertakes sponsored research and development projects from industrial and other organizations in public as well as private sector.

Further, every Ph.D. Scholar shall have to earn 14/16 credits in total including Core Courses credits, discipline elective courses Credits and MOOC or Research and Publication Ethics. The Ph.D. CSE programme is dedicated to conducting and reporting on a research problem culminating in a thesis. Further, every Ph.D. Scholar shall have to earn 14/16 credits in total – 08 Core Courses credits, 04 Discipline Specific Elective Courses Credits and 02/04 Credits from Research and Publication Ethics or MOOC.

2. Learning Outcomes based Curriculum Framework

The CBCS evolved into learning outcomes based curriculum framework and provides an opportunity for the students to choose courses from the prescribed courses comprising core, elective/minor or skill-based courses. The courses can be evaluated following the grading system, which is considered to be better than the conventional marks system. Grading system provides uniformity in the evaluation and computation of the Cumulative Grade Point Average (CGPA) based on student's performance in examinations which enables the student to move across institutions of higher learning. The uniformity in evaluation system also enables the potential employers in assessing the performance of the candidates.

2.1 **Objectives of the Programme**

After completion of their programme, the **research scholars** are expected to:

- PEO1: extending the limits of what is currently known through innovative and highquality work;
- PEO2: the capacity to devise, design and conduct research that has real academic weight and shows integrity;
- PEO3: systematic understanding of a subject and mastery of the skills and methods associated with this subject;
- PEO4: the capacity for critical analysis, assessment and synthesis of new and complex ideas;
- PEO5: satisfying standards associated with national and international peer-reviewed publications.

2.2 Programme Outcomes (POs)

The PhD programme of Computer Science and Engineering prepares students to attain the educational objectives by ensuring that students demonstrate achievement of the following student outcomes:

PO1	Advanced Knowledge: A in-depth understanding of a substantial body of knowledge that is at the forefront of professional practice. Scholars in the field of Computer Science and Engineering to acquire positions at top-tier research institutions.
PO2	Research: The ability to conceptualize, design, and implement research for the generation of new knowledge, applications, adjustment of research methodologies in the light of unforeseen problems
PO3	Area of Research: the ability to make acceptable judgments on complex issues in specialized fields; and the ability to produce original research to merit publication.
PO4	Application: The aptitude to undertake basic and/or applied research at an advanced level; and contribute to the development of academic or professional skills, techniques, tools, practices, ideas, theories, approaches, and/or materials.
PO5	Methods: An understanding of methods of enquiry or creative activity, or both, in their primary area of study that enables the student to evaluate different approaches for problem solving using well established techniques; devise and sustain arguments; and comment upon aspects of current research.
PO6	Professionalism: The qualities and transferable skills necessary for employment requiring the exercise of personal responsibility and largely autonomous initiative in complex situations;
PO7	Knowledge: the ethical behaviour consistent with academic integrity and the use of appropriate guidelines for responsible conduct of research by applying knowledge to particular contexts.
PO8	Intellectual Abilities: Demonstrate skills in oral and written communication sufficient to publish and present work of quality which satisfies peer review and to prepare grant proposals.
PO9	Critical Research Thinking: Critically apply theories, methodologies and knowledge to address fundamental questions in their primary area of study.
PO10	Ethics: Apply ethical principles and strictly committed to professional ethics and responsibilities in their field and in academia.
PO11	Self-Managerial Skills: Apply self-reflective and self-critical approach based on research and to act autonomously in the planning and implementation of research.
PO12	Societal Impact: Work collaboratively to develop and exchange research knowledge so as to benefit and influence the society

2.3 Programme Specific Outcomes (PSOs)

The fresh **research scholars** of the Ph.D. programme will have the following discipline-specific graduate attributes:

PSO1	demonstrate proficiency in a specialized area of Computer Science and
	Engineering;
PSO2	ability to apply principles of computer engineering for the entire life cycle of
	the project ranging from initial design to the closure of the project;
PSO3	ability to identify and analyze various applications in design and functions of
	various applications.
PSO4	research and Development: Cultivate the field of computing and its latest
	trends, to pursue teaching, research & development activities and to work
	effectively in a team.
PSO5	develop and evaluate effective solutions for real-life and research problems.

3. Programme Structure

Course work of Doctor of Philosophy programme spans over one semester and comprise of 14/16 credits weightage consisting of Core Courses (CC) and Discipline Specific Elective Courses (DSC).

Table 1: Pre-Ph.D. Course Credit Scheme

Scheme of Examination for Ph.D. (Computer Science and Engineering)

Semester	Core (Courses CC)	Discipline S Cour	Total Credits	
Ι	No. of Courses	Total Credits	No. of Courses	Total Credits	
	03	10/12	01	04	14/16
Total	03	10/12	01	04	14/16
%age	-	71.42/75.0	-	28.58/25.0	100

Table 2: Detailed break-up of Courses' Type (Semester wise)

Semester	Core Courses	Discipline Elective Skill		Total
		Specific Courses	Enhancement	Courses
			Courses	
Ι	CC			
	CC	DSC1	-	04
	CC			

Course Code	Course Title Credit			
	Semester I	Theory	Practical	Total
	Research Methodology	4	0	4
PH-CSE-01				
	Advancements in Computing	4	0	4
PH-CSE-02				
	Research and Publication Ethics	2/4	0	2/4
RPE-04				
	Elective	4	0	4
PH-CSE-03				

Table 4: Ph.D. Courses' List

Course Code	Course Title	Credits			
Core C	Core Courses				
	Research Methodology	4			
PH-CSE-01					
	Advancements in Computing	4			
PH-CSE-02					
	Research and Publication Ethics	2/4			
RPE-04					
Discipline Specific Elective Courses'					

PH-CSE-03	Elective	4

List of Elective Courses against PH-CSE-03

	8
PH-CSE-03(i)	Simulation and Modeling
PH-CSE-03(ii)	Advanced Computer Architecture
PH-CSE-03(iii)	Advanced Programming Languages
PH-CSE-03(iv)	Data Mining & Data Warehousing
PH-CSE-03(v)	Advanced Operating Systems
PH-CSE-03(vi)	Advanced Database Systems
PH-CSE-03(vii)	Data Communication and Networking
PH-CSE-03(viii)	Advanced Software Engineering
PH-CSE-03(ix)	Artificial Intelligence
PH-CSE-03(x)	Machine Learning
PH-CSE-03(xi)	Deep Learning
PH-CSE-03(xii)	Data Science
PH-CSE-03(xiii)	Big Data Analytics
PH-CSE-03(xiv)	Wireless Networks
PH-CSE-03(xv)	Network Security
PH-CSE-03(xvi)	Cloud Computing
PH-CSE-03(xvii)	Internet of Things

Course Code	Course Type	Nomenclature of Paper	Credit	Int. Marks	Ext. Marks	Total Marks
	<i>v</i> 1					

04

04

04

02/04

30

30

-

30

70

70

-

70

100

100

100

50/100

Research Methodology

Advancements in Computing

Research and Publication Ethics

Scheme of Examination for Ph.D. (Computer Science and Engineering)

List of Elective Courses against PH-CSE-03:

Elective Paper

PH-CSE-01

PH-CSE-02

PH-CSE-03

RPE-04

Core

Core

Core

Discipline

Specific

Elective

PH-CSE-03(i)	Simulation and Modeling
PH-CSE-03(ii)	Advanced Computer Architecture
PH-CSE-03(iii)	Advanced Programming Languages
PH-CSE-03(iv)	Data Mining & Data Warehousing
PH-CSE-03(v)	Advanced Operating Systems
PH-CSE-03(vi)	Advanced Database Systems
PH-CSE-03(vii)	Data Communication and Networking
PH-CSE-03(viii)	Advanced Software Engineering
PH-CSE-03(ix)	Artificial Intelligence
PH-CSE-03(x)	Machine Learning
PH-CSE-03(xi)	Deep Learning
PH-CSE-03(xii)	Data Science
PH-CSE-03(xiii)	Big Data Analytics
PH-CSE-03(xiv)	Wireless Networks
PH-CSE-03(xv)	Network Security
PH-CSE-03(xvi)	Cloud Computing
PH-CSE-03(xvii)	Internet of Things

PH-CSE-01 Research Methodology							
Course	Course	Contact	Contact Delivery		um Marks	Exam	Assessment
Туре	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods
Core Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/
					20 5 5		Attendance

Instructions to paper setter for Final Term Examination: The Final Term examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives: The objective of this course is to get the students familiar with different aspects of research methodology, namely, research design, collection and analysis of data, and interpretation of results.

Course Outcomes	At the end of this course, the student will be able to :
CO1	define: objectives, hypothesis, interpretation, data analysis, data collection, research design and method interpretation data analysis sampling
CO2	describe: objectives, hypothesis, interpretation, data analysis, data collection, research design and method, interpretation, data analysis, sampling.
CO3	illustrate: measurement, data collection, processing, sampling, analysis and its strategies, reports.
CO4	categorize: research, sampling methods, data collection techniques, reports ,and data processing strategies. perform: data analysis.
CO5	compare: sampling methods, data collection techniques, reports and data processing strategies.
CO6	create: thesis/reports, design research tool, interpret(derive) results.

CO-PEO Mapping Matrix for Course PH-CSE-01

COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	1	3	3	3
CO2	2	2	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
CO6	3	3	3	3	3
Average	2.5	2.5	3	3	3

CO-PO Mapping Matrix for Course PH-CSE-01												
COs	P01	PO2	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	P011	P012
CO1	1	3	1	1	1	-	-	3	-	3	1	3
CO2	2	1	1	3	1	-	-	3	-	3	2	3
CO3	3	1	1	3	3	-	-	3	-	3	3	3
CO4	3	3	1	3	1	-	-	3	-	3	3	3
CO5	3	1	1	3	3	-	-	3	-	3	3	3
CO6	3	3	3	3	3	-	-	3	-	3	3	3
Average	2.5	2	1.3	2.6	2	-	-	3	-	3	2.5	3
	CO-	PSO	Mappi	ng M	atrix f	or Co	urse Pl	H-CSE	-01			
COs	PSC	D1	Р	SO2		P	SO3		PSO ₂	Ļ	PSC	05
CO1	3	,		3			1		3		3	
CO2	3	,		3			2		3		3	
CO3	3	,		3			3		3		3	
CO4	3	,		3			3		3		3	
CO5	3	i		3			3		3		3	
CO6	3 3 3 3 3											
Average	3)		3			2.5		3		3	
								·		·		

Unit-1

Research an Introduction: Meaning, Characteristics, Classification, Importance.

Research Methods and Techniques: Classification of Research Methods, Advantages and Limitations, Steps Involved.

Research Tools: Library, Internet and Simulation.

11

Reviewing the literature: Place of the literature review in research, Bringing clarity and focus to research problem, Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, Review of the literature, searching the existing literature, reviewing the selected literature, Developing a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed.

Unit-II

Formulation of Research Problem: Formulation of Research Problem, Considerations in selecting a research problem, Steps in formulation of a research problem, Delimiting problems, Sources of Research Problem, Criteria of a good Research Problem, Formulation and Stating the Problem, Common Errors. Hypothesis: Meaning, Importance, Types, Sources, Characteristics, Testing.

Research Design: Meaning, Characteristics of a Good Research Design, Components of a Research Design, and Types of Research Design.

Unit-III

Census and Sample Investigation: Meaning of Census and Sampling Investigation, Objective of Sampling, Advantages of Sampling and Census Method, Types of Sampling Techniques, Sampling Errors.

Data Collection: Primary and Secondary Data, Methods of Primary Data Collection, Sources of Secondary Data, Precautions in the use of Secondary Data.

Processing of Data: Editing, Coding, Classification.

Unit-IV

Analysis and Statistical Techniques: Meaning of Analysis, Primary Data Analysis, Secondary Data Analysis, Characteristics of Data Analysis and Statistical Methods in Analysis.

Interpretation of Data: Meaning and Need, Pre-requisites of Interpretation, Sources of Errors, Conclusion and Generalization,

Report Writing: Research Report, Types of Reports, Steps in Report Writing, Format of Research Report, Style and Typing of Research Report, Problems in Preparing Research Report.

- Text Books
 - 1. J. Garg, B.L, Karadia, R, Aggarwal F, An Introduction to Research Methodology, RBSA Publishers, 2002.
 - 2. Kothari,C.R, Research Methodology: Methods and Techniques. New Age International, 1990 Santosh Gupta.

Reference Book

1. N. Gurumani, Scientific Thesis Writing and Paper Presentation, MJP Publishers. Montgomery, Douglas C, Design and Analysis of Experiments, Wiley India Pvt. Ltd.

PH-CSE-02 Advancements in Computing													
Course	Course	Contact	Delivery	Maximu	um Marks	Exam	Assessment						
Туре	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods						
Core Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/						
					20 5 5		Attendance						

Instructions to paper setter for Final Term Examination: The Final Term examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives: The objective of this course is to get the students familiar with database system concepts and architecture, relational data model, cpu organization, issues, opportunities and constraints in e-commerce and software quality.

Course Outcomes	At th	ne end	of this	cours	e, the s	tudent	will be	e able t	o :			
CO1	defin cons	define: DBMS architecture, CPU organization, Issues, opportunities and constraints in E-commerce and Software Quality factors										
CO2	desc mach and	describe: DBMS functions and component modules, functional dependencies, machine instructions, I/O interface, communication technologies of public life and standards of software quality.									encies, lic life	
CO3	Illus prog	Illustrate: Basic operation of relational algebra, Normal forms, micro programming concept, SEI-CMM Model.										
CO4	categ gove	gorize: ernance	Data 1 e, Qual	model lity fac	s, Data ctor and	base la l quali	anguage ty metr	es, CPU ics	J memo	ory, Apj	plication	s of E-
CO5	com gove	pare: l ernance	Data m e, Softv	odels, ware s	Datab tandarc	ase la ls, Qu	nguage: ality fao	s, CPU ctor and	memo l qualit	ry, App y metri	olications cs	s of E-
	CO-	PEO	Mappi	ng M	atrix fo	or Cou	ırse PI	I-CSE	-02			
COs	PE	01		PEO	2	I	PEO3		PEO4	+	PEC	05
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	
CO3		3		3			3		3		3	
CO4		3		3			3		3		3	
CO5		3		3			3		3		3	
Average	2	.4		2.4			3		3		3	
	CO	-PO N	Ларріг	ng Ma	trix fo	r Cou	rse PH	-CSE	·02			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	3	-	3	1	3

CO2	2	1	1	3	1	-	-	3	-	3	2	3
CO3	3	1	1	3	3	-	-	3	-	3	3	3
CO4	3	3	1	3	1	-	-	3	-	3	3	3
CO5	3	1	1	3	3	-	-	3	-	3	3	3
Average	2.4	1.8	1	2.6	1.8	-	-	3	-	3	2.4	3
CO-PSO Mapping Matrix for Course PH-CSE-02												
COs	PS	01	PSO2			PS	503		PSO4	+	PSC	05
CO1	3	;		3			1		3		3	
CO2	3	;	3			2			3		3	
CO3	3	;		3		3			3		3	
CO4	3	5		3			3		3		3	
CO5	3	;	3				3		3		3	
Average	3	3 3		3		2	2.4		3		3	

Unit-I

Data Base System concepts and Architecture: Data Models, Schemas and Instances, DBMS architecture and Data Independence, Data Base languages & Interfaces, DBMS functions and component modules. Relational Data Model: Relational Model concepts, Integrity constraints over relations, Relational Algebra, Basic operations, Relational Data Base Design, Functional dependencies, Decomposition, Desirable properties of decomposition, normal forms based on primary keys (I NF, 2 NF, 3 NF and BCNF).

Unit-II

CPU organization: Processor organization, Machine Instructions, Instruction cycle, Instruction Format and addressing mode. Microprogramming concepts and micro program sequencer.

I/O Organization: I/O interface, interrupt structure, transfer of information between CPU/Memory and I/O devices, and IOPs, Memory Organization.

Parallel Architectures: Introduction, Classification, Parallel Techniques, Code Scheduling, Interconnection networks, VLIW Superscalar.

Unit-Ill

Issues, opportunities and constraints in applications of modern information and communication technologies in following domains of public life: commerce (e-commerce), banking (e-banking), teaching-learning (e-learning), Public governance (c-governance) and tourism.

Unit-IV

Software Quality, Software Quality Factors, Software Quality Metrics, Relationship between quality factors and quality metrics, Software standards, Software Reviews, Formal Technical Reviews, Software Quality Assurance, Clean Room Software Engineering, SEI-CMM. Standards of Software Quality, Quality Assurance Standard, Quality Review

Text Books

- 1. Elmasri & Navathe : Fundamentals of Database System, 3rd Edition, Addison Wesley, New Delhi.
- 2. Korth & Silberschatz: Database System Concept, ^{4th} Edition, McGraw Hill International Edition.

- 1. Mano M. Morris Digital Logic and Computer Design, Prentice hall of India Pvt. Ltd., 2000.
- 2. Carpinelli, Computer Systems Organization & Architecture, Pearson Education.
- 3. Hayes. J.P., Computer Architecture and organisation, McGraw Hill, 1998, Third Ed.

		PH-CS	SE-03(i) Simula	tion and M	lodeling							
Course	Course	Contact	Delivery	Maximu	ım Marks	5	Exam	Assessment				
Туре	Credit	Hours/ Week	Mode	External	Intern	al	Duration	Methods				
Core Theory	04	04	Lecture	70	30		3 Hours	TEE/MTE/ Assignment/				
					20 5	5		Attendance				
Instructions to whole content compulsory and to the compuls questions. The questions will c Course Object	of the cours of the cours d will be cor ory first qu student will earry equal n ives: The o	ter for Finances. The total asset of substantial of	al Term Examinal number of que short/objective-ty re shall be four e question from e	estion: The lestions shall pe questions units in the each unit in a get the stude	Final Ter be nine. from the question addition to ents famil	m exa Ques comp pape o the	amination sl ition numbe plete syllabu r each cons compulsory ith Concept	hall cover the r one will be is. In addition isting of two question. All of simulation				
system, princip	al used in m	odeling and	l illustration of va	arious proble	ms using	simu	lation					
Course Out	tcomes	At the end c	of this course, the	student will	be able to	o :						
CO1	c t	lefine: Con test valid	struct a model for ity of the model .	r a given set	of data ar	nd ana	alyse output	produced				
CO2	(5	lescribe: nu simulation r	merical methods result.	to interpret,	extract, a	nalys	e and preser	nt				
CO3] 1 0	llustrate: D equirement communicat	evelop simulations and solves real tion.	n programs to world proble	o design a ems basec	a syst 1 on c	em that mee lient server	ets industrial				
CO4		categorize: ' performance	Test modern simu e of different sim	ulation tools ulation mode	and resou els.	irces	to measure t	he				
CO5	C 1	compare: M nake decisi	Take use of prolons in teams.	olem solving	, approac	hes t	to work cha	allenges and				
CO6	(lesign and o	develop various s	imulation mo	odels, app	olicati	ons.					
	С	O-PEO Ma	apping Matrix f	or Course P	H-CSE-	03(i)						
COs		PEO1	PEO2	PEO3		PEC	04	PEO5				
CO1		1	1	3		3		3				
CO2		2	2	3		3		3				
CO3		3	3	3		3		3				
CO4		3	3	3		3		3				
CO5		3	3	3 3 3								

2.5

2.5

CO6

Average

CO-PO Mapping Matrix for Course PH-CSE-03(i)												
Cos	POI	P02	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	P011	P012
CO1	1	3	1	1	1	-	-	3	-	3	1	3
CO2	2	1	1	3	1	-	-	3	-	3	2	3
CO3	3	1	1	3	3	-	-	3	-	3	3	3
CO4	3	3	1	3	1	-	-	3	-	3	3	3
CO5	3	1	1	3	3	-	-	3	-	3	3	3
CO6	3	3	3	3	3	-	-	3	-	3	3	3
Average	2.5	2	1.3	2.6	2	-	-	3	-	3	2.5	3
	CO-F	PSO N	Mappin	ng Ma	trix fo	r Cou	rse PH	-CSI	E-03(i)			
Cos	PS	01	Р	SO2		P	SO3		PSO	4	PS	05
CO1	3	•		3			1		3		3	
CO2	3	5		3			2		3		3	1
CO3	3	5		3			3		3		3	
CO4	3			3			3		3		3	
CO5	3	3 3					3		3		3	
CO6	3			3			3		3		3	
Average	3	5		3		,	2.5		3		3	

Unit -1

Introduction: Concept of simulation, steps in simulation experiment, Benefits of simulation and its pitfalls, system modeling, principal used in modeling, Generation of random numbers, Generation of non-uniformly distributed random numbers.

Illustrative examples: Inventory problem. Chemical Reactor, Servo System, Water Reservoir System, Hypothetical Computer.

Unit-II

Simulation of discrete system: Fixed time-step vs. Event-to-Event Model, Monte Carlo computation.

Continuous system simulation: Continuous System models, Differential Equations, Analog Computers, Hybrid Computers, Digital-Analog Simulators.

Queuing Systems: Congestion in systems, Arrival Patterns, Poisson Arrival Patterns, Exponential Distribution, Coefficient of Variation, Erlang Distribution, Service Times, Normal Distribution, Basic concept of queuing theory, Simulation of single server, two servers.

Unit-III

Simulation of PERT Network: Network model of a project, Analysis of an Activity Network, Critical Path Computation, Uncertainties in Activity Durations, Simulation of an Activity Network, Computer Program for Simulation, Resource allocation and Cost Consideration.

Simulation of Inventory Control And Forecasting: Elements of inventory theory, inventory models, Forecasting and aggression analysis.

Design And Evaluation of Simulation Experiments: Length of Simulation Runs, Variance Reduction Techniques and validation.

Unit-IV

Simulation Languages: Continuous and discrete simulation languages, Block Structured continuous simulation languages, Expression based languages, Discrete system simulation languages, GPSS SIMCRIPT SIMULA, Factors in selection of discrete system simulation languages.

Text Books

- 1. Narsing Deo, System Simulation with Digital Computers, PHI New Delhi.
- 2. Avrill M. Law & Kelton, Simulation Modeling and Analysis, McGraw Hill.

- 1. Jerry Banks et. al., Discrete Event System Simulation, Prentice Hall of India
- 2. Gordon Geoferry: "System Simulation, Prentice-Hall of India Pvt Ltd New Delhi-1993

	PH-	CSE-03(ii)	Advanced				
Course Type	Course Contact		Delivery	Maximu	m Marks	Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment(s) / Attendance

Instructions to paper setter for Final Term Examination: Final Term examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks.

Course Objectives: The objective of this course is to get the students familiar with different concepts related to computer architecture.

Course Outcomes	At th	e end c	of this	course	, the st	udent v	vill be a	uble to	:			
CO1	defin pipel pagir MIM	define: concepts of parallel processing, computer architecture, principles of pipeline, collision free scheduling, ILP processors, branch handling, TLB, paging, segmentation, memory hierarchy technology, distributed and shared MIMD.										
CO2	unde pipel pagir techr	rstand a ine, co ng, seg niques,	and e ollisio menta distri	xplain: on free ation, 1 buted a	paralle sched memor nd shar	el proce uling, y hiera red MIN	essing, o ILP pr archy t MD.	compu rocess echno	iter arch ors, bra logy, s	nitectur anch h witchin	e, princ andling ng and	ciples of g, TLB, routing
CO3	illust pagir cache	lustrate different types of: computational models, pipeline, scheduling, TLB, aging, segmentation, cache performance, network interconnection topologies, ache coherence problem and switching network.										
CO4	categ TLB multi	orize: pagii proces	level ng ar sors.	of para	llelism mentat	, linear ion, U	and no MA,	on-line NUM/	ear pipe A, CC-	line, co NUMA	ode sch A and	eduling, COMA
CO5	relate syncl based	e: conc nronous l cache	curren s and cohe	t and asynch rence p	paralle ronous rotocol	l exec pipelir ls.	ution, ne, diffe	depen erent c	dencies ode sch	betwe eduling	en inst g and h	truction, ardware
	со-	PEO N	lappi	ing Ma	trix fo	r Cour	se PH-	CSE	-03(ii)			
COs	Р	EO1		PEO	2	F	PEO3		PEO	4	PE	EO5
CO1		1		1			3		3			3
CO2		2		1			3		3			3
CO3		3		1			3		3			3
CO4		3		1			3		3			3
CO5		3		1			3		3			3
Average	2.4 1 3 3 3											
	CO	-PO M	appi	ng Mat	rix for	Cours	se PH-(CSE-	03(ii)			
COs	PO1	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										

CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3
CO-PSO Mapping Matrix for Course PH-CSE-03(ii)												
COs	P	SO1		PSO2		PS	03		PSO4		PSC)5
CO1		3		1			1		-		3	
CO2		3		1			2		-		3	
CO3		3		1		3			-		3	
CO4		3		1			3		-		3	
CO5		3 1					3		-		3	
Average	3 1				2	.4		-		3		
			•					•		·		

Unit-I

Fundamentals: Computational model, Evolution of computer architecture, process, program thread, concurrent and parallel execution, types and levels of parallelism, classifications of parallel architectures, Relationships between languages and parallel architectures.

Unit-II

Instruction-Level-Parallel Processors: Evolution and overview, Dependencies between instructions, Instruction Scheduling, Preserving Sequential Consistency, Speed-up Potential of ILP Processing.

Pipelined Processors: Basic concepts, Principles of Pipelined instruction processing, synchronous & asynchronous pipelining. Linear Pipeline-clocking and timing control, speedup efficiency & throughput. Nonlinear pipeline, reservation table, latency analysis, collision free scheduling, internal data forwarding.

Unit-III

Superscalar pipeline Design- Structure data dependencies pipeline stalling, in order issue, out of order issue, VLIW architecture. Branch handling delayed handling, branch processing multi way branching, guarded execution, code scheduling basis, block scheduling, loop scheduling, and global scheduling.

Memory Hierarchy Technology: Inclusion, coherence and locality, virtual memory models, TLB, paging and segmentation, memory replacement policies, cache addressing models, cache performance issues, interleaved memory organization.

Unit-IV

MIMD Architectures: Architectural concepts, Problems of scalable computers, Main design issues of scalable MIMD computers.

Distributed Memory MIMD Architectures: Introduction, Direct Connection networks, Shared Memory MIMD Architectures, Dynamic interconnection networks-shared path, switching networks, crossbar &

multistage networks, Cache coherence problem, Hardware based cache coherence protocol-Snoopy cache protocol directory scheme, scalable coherent interface, and hierarchical cache coherence protocol. UMA, NUMA, CC-NUMA and COMA multiprocessors.

Text Books

- 1. Sima, Dietal, Advanced Computer Architecture, Addison Wesley, 2000.
- 2. Wang, Kai, Advanced Computer Architecture, McGraw Hill, International Ed.

- 1. Wang Kai, Brings Faye A., Computer Architecture and Parallel Processing, McGraw Hill, International Ed.
- 2. Main, Richard Ya, Advanced Computer Architecture PHI 1999

PH-	CSE-	03(iii)	Advanced	Programming	Languages
	CDL	vv (m)	1 iu vanceu	I I VSI amminis	Languages

Course	Course	Contact	Delivery	Maximu	um Marks	Exam	Assessment
Туре	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods
Core Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/
					20 5 5		Attendance

Instructions to paper setter for Final Term Examination: The Final Term examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives: The objective of this course is to get the students familiar with Concept of Programming Languages, Structured Data Types, Sequence Control and Storage Management.

Course Outcomes At the end of this course, the student will be able to :														
CO1	defir	ne: Ar	n abilit	y to j	prograr	n in c	lifferen	t langu	age pa	radigm	s and ev	valuate		
	their	relati	ve bene	efits.										
CO2	desc	ribe:	An un	dersta	nding	of the	e key o	concept	s in t	he imp	lementat	ion of		
	com	common features of programming languages. Skills gained.												
CO3	illus impl	illustrate: Investigate semantic issues in programming languages by studying implementations in an interpreter.												
CO4	cates	categorize: Define the semantics of a programming language using a												
	defir	definitional interpreter. Competency developed												
CO5	com	compare: Solve problems using a range of programming paradigms and assess												
	the e	the effectiveness of each paradigm for a particular problem.												
CO6	deve	lop: a	pplicat	ions u	sing va	rious l	anguag	jes.						
	CO-P	EO M	apping	g Mat	rix for	Cours	se PH-	CSE-0	3(iii)					
COs	PE	01		PEO	2	I	PEO3		PEO4		PEC)5		
CO1		1		1			3		3		3			
CO2		2		2			3		3		3			
CO3		3		3			3		3		3			
CO4		3		3			3		3		3			
CO5		3		3			3		3		3			
CO6	,	3		3			3		3		3			
Average	2	.5		2.5			3		3		3			
	CO-P	O Ma	pping	Matr	ix for	Cours	e PH-C	CSE-03	B(iii)			-		
COs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													

CO1	1	3	1	1	1	-	-	3	-	3	1	3
CO2	2	1	1	3	1	-	-	3	-	3	2	3
CO3	3	1	1	3	3	-	-	3	-	3	3	3
CO4	3	3	1	3	1	-	-	3	-	3	3	3
CO5	3	1	1	3	3	-	-	3	-	3	3	3
CO6	3	3	3	3	3	-	-	3	-	3	3	3
Average	2.5	2	1.3	2.6	2	-	-	3	-	3	2.5	3
	CO-P	SO M	lapping	g Mat	rix for	Cour	se PH-	CSE-0	3(iii)			
COs	PSO	D1	Р	SO2		PS	503		PSO4	+	PSC	05
CO1	3			3			1		3		3	
CO2	3			3			2		3		3	
CO3	3			3			3		3		3	
CO4	3			3			3		3		3	
CO5	3			3			3		3		3	
CO6			3			3		3		3		
Average	3			3		2	2.5		3		3	

Unit-I

Introduction: Brief history of Programming Language, Characteristics of programming language. Programming Language Processors: The structure and operation of a computer, Hardware and firmware computers, Translator and simulator computers, Syntax, semantics and virtual computers, hierarchies of computers, binding and binding time.

Elementary Data Types: Data object, variable and constants, data types, specification of elementary data types, declarations, type checking and type conversion, assignment and initialization, numeric data types, enumerations, Boolean, characters.

Unit-II

Structured Data Types: Structured data object and data types, specification of data structure types, implementation of data structure types, declarations and type checking for data structures, vector and arrays, record, character strings, variable sized data structures, pointers and programmer-constructed data objects, sets, file and input/output.

Subprogram And Programmer-Defined Data Types: Evolution of the data type concept, Abstraction, encapsulation, and information hiding, subprogram, type definitions, abstract data types.

Unit-III

Sequence Control: Implicit and explicit sequence control, sequence control within expression, sequence control between statements, subprogram sequence control, recursive subprogram, exceptions and exception handlers, Co-routines, scheduled subprograms, tasks and concurrent execution, data structures and sequence control.

Data Control: names and referencing environments, static and dynamic scope, block structure, local data and local referencing environments, shared data, task and shared data.

Unit-IV

Storage Management: Major Runtime elements requiring storage, programmer and system controlled storage management, storage management phases, static storage management, stack based storage management, heap storage management

Syntax And Translation: General syntactic criteria, syntactic elements of language, stages in translation, formal definition of syntax.

Operating and Programming Environment: Batch processing environment, interactive environments, embedded system environments, programming environments.

Theoretical Models: Problem in syntax and translation, problem in semantics.

Text Books

- 1. Sebessa W. Robert, Concepts of programming languages 4th edition, (Addison Wesley 2000)
- 2. Sethi Ravi, Programming languages 2nd edition, (Addison Wesley-2000)

Reference book

1. Programming Languages, design and implementation second edition by Terrence W. Pratt Prentice Hall of India private limited, New Delhi

	P	H-CSE-	03(iv)	Data 1	Minin	g & D	ata V	Vareho	ousing	Ş					
Course Type	Course	urse Contact Delivery Maximum Marks Exam Assessment edit Hours/Week Mode External Internal Duration Methods													
	Credit	Hours	/Week	M	ode	Exter	mal	Interna	l D	uration	Me	thods			
Optional Theory	04	0	4	Lec	cture	70)	30	3	Hours	TEE Assig Atte	E/MTE/ gnment/ ndance			
Instructions to whole content o compulsory and compulsory first Student will atte carry equal mark	paper so f the cou will be co question mpt one s.	etter for urse. Tota onsisting of there sha question	Final al num of shor all be fo from e	Term ber of t/objec our uni ach un	Exam questi tive typ ts in th it in ac	ination ons sh pe ques e ques Idition	n: Fin all be stions tion pa to con	al Tern nine. from co aper eao mpulso	n exan Questio ompleto ch cons ry ques	nination on num e syllabu sisting c stion. A	shall c ber one us. In ac of two q ll quest	cover the will be will be will be dition to uestions wi			
Course Objectiv data warehouse a	ves: The output of the output	bjective hining, na	of this amely,	course OLAP	e is to g , Assoc	get the viation	stude rule m	nts fam nining, o	iliar w: classifi	ith diffe cation a	rent con nd pred	ncepts o iction.			
Course Outcon	nes At	the end o	of this o	course,	the stu	ident a	ble to	:							
CO1	de Ol Ai	fine: the LAP, ass alysis.	concep sociatio	ts of d n rule	ata mir e mini	ning, da ng, da	ata pre ata cla	e-proces assifica	sing, c tion	outliers, predict	data wa ion and	arehouse l cluste			
CO2	de to	Analysis. describe: key process of data mining ,data warehousing, OLAP, data warehousing to data mining , association rule, classification and prediction methods.													
CO3	ap us	ply: OLA e: decisio	P tech	nology ction, b	and as average and a solution and a s	sociati n and l	on rul back p	es. ropagat	ion cla	assificat	ion met	hods.			
CO4	dit dir mi	ferentiate nensiona ning clas	e: ope l and i sificati	rationa multidi on met	al data imensio thods.	abase onal as	syster ssociat	ms and ion rul	d data es, and	a ware d betwe	housing en vari	, singl ous dat			
CO5	ev dii	aluate: da nensiona	ata mi 1 assoc	ning a iation 1	nd data rule.	a warel	nouse,	OLAP	techno	ology, s	ingle a	nd mult			
	C	O-PEO N	Ларріі	ng Mat	trix fo	r Cour	se PH	-CSE-	03(iv))					
COs		PEO1		PEC	02		PEO	3	PI	EO4	P	EO5			
CO1		1		1			3			3		3			
CO2		2		2			3			3		3			
CO3		3		3			3			3		3			
CO4		3		3			3			3		3			
CO5		3		3			3			3		3			
Average		2.4		2.4	1		3			3		3			
	(CO-PO M	Iappin	g Mat	rix for	Cours	e PH-	-CSE-()3(iv)						
COs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	3	1	1	1	-	-	-	-	-	1	3			
CO2	2	1	1	3	1	-	-	-	-	-	2	3			
CO3	3	1	1	3	3	-	-	-	-	-	3	3			
CO4	3	3	1	3	1	-	-	-	-	-	3	3			
	· · · · · · · · · · · · · · · · · · ·		1		-		1	1			_				
CO5	3	1	1	3	3	-	-	-	-	-	3	3			

CO-PSO Mapping Matrix for Course PH-CSE-03(iv)													
COs	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	3	3	1	-	3								
CO2	3	3	2	-	3								
CO3	3	3	3	-	3								
CO4	3	3	3	-	3								
CO5	3	3	3	-	3								
Average	3	3	2.4	-	3								

Unit-I

Introduction, Evolution of Data Warehousing, Principles of Data Warehousing, Types of Data and their uses, conceptual Data Architecture, Design Techniques, introduction to the Logical Architecture, Creating the Data Asset, Business Data Warehouse Design, Populating the Data Warehouse.

Unit-II

Implementation of Warehouse, Obstacles to Implementation, Planning your implementation, justifying the warehouse, Organizational Implications of Data Warehousing, The Data Warehouse in your Organization, Data Warehouse Management, Locking to the Future.

Data Mining: Motivation, Importance, data mining, kind of data, Functionalities, interesting patterns, classification of data mining system, Major issues.

Unit-III

Data warehouse and OLAP Technology for data mining: data warehouse, operational data base systems and data warehouse, Architecture, Implementation, development of data cube technology, data warehousing to data mining, Data warehouse usage.

Data Preparation: Preprocess, Data cleaning, Data Integration and transformation, Data reduction.

Unit-IV

Concept Description: Characterization and Comparison, Data Generalization and summarization-based characterization, Analytical characterization, analysis of attribute relevance, mining class comparisons, and mining descriptive statistical measures in large databases.

Mining Association Rules in Large Database, Mining single-dimensional Boolean association rules from transactional databases, mining multilevel association rules from transaction databases, Mining multidimensional association rules from relational databases and data warehouses, From association mining to correlation analysis, constraint-based association. Classification and prediction, issues, classification by decision induction, Bayesian classification, classification by back propagation, classification based on concepts crom association rule mining other classification methods.

Text Books

- 1. Ale Berson, Stephen Smith, KorthTheorling, Data Mining, TMH.
- 2. Adruaans, Longman, Addison-wesley Data Mining,
- 3. Addison-Wesley Longman, Data Warehousing in the Real World.

- 1. Chanchal Singh, Data Mining and Warehousing, Wiley.
- 2. Jiawei Han and MichelineKamber, Data Mining: Concepts and Techniques, San Francisco: Morgan Kaufmann Publishers, 2001.

	PI	H-CSE-03(v)	Advanc	ed Operat	ting Syste	ms	
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods
Compulsory	04	04	Lecture	70	30	3 Hours	TEE/MTE/
Theory					20 5 5		Assignment/ Attendance

Instructions to paper setter for Final Term Examination: The Final Term examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives: The objective of this course is to study, learn, and understand the major concepts of advanced operating systems, namely, multimedia operating systems, distributed and real time operating systems, threads, security and design issues in operating systems.

Course	At the	At the end of this course, the student will be able to:													
Outcomes															
CO1	define	e: kerne	el, threa	ds, con	cept of	multin	nedia,	distrib	uted an	d real t	ime ope	erating			
	syster	n, issue	es in des	sign, se	curity a	nd perf	formai	nce of	operatin	ig syste	m.				
CO2	under	stand a	and des	cribe:	kernel,	thread	s, dea	dlock,	virtua	lizatio	n, conc	ept of			
	multi	media,	distribu	ited and	l real ti	me ope	erating	g syster	n, issue	es in de	sign, se	ecurity			
	and p	erforma	nce of	operati	ng syste	em.									
CO3	demo	nstrate/	illustra	te: proc	ess sch	eduling	g, disk	schedu	ıling ,re	al time	schedu	ling,			
	mutu	al exclu	ision, d	eadlock	, secur	ity and	protec	ction m	lechanis	sm in o	peratin	g			
	syste	system.													
CO4	classi	classify algorithm for: process scheduling and disk scheduling, mutual exclusion,													
0.05	deadl	deadlock, security and protection.													
COS	comp	compare algorithm for: process scheduling and disk scheduling, mutual exclusion,													
	deadle	leadlock, security and protection.													
	CC)-PEO	Mappi	ng Mat	rix for	Cours	e PH-	CSE-()3(v)						
COs	PE	01		PEO2		P	EO3		PEO4	↓	PEC)5			
CO1		1		1		3			3		3				
CO2	-	2		2		3			3		3				
CO3		3		3		3			3		3				
CO4		3		3			3		3		3				
CO5		3		3			3		3		3				
Average	2	.4		2.4			3		3		3				
	C	O-PO I	Mappin	ng Mati	rix for	Course	e PH-O	CSE-0	3(v)						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	3	1	1	1	1	-	-	-	-	1	3			
CO2	2	1	1	3	1	1	-	-	-	-	2	3			
CO3	3	1	1	3	3	1	-	-	-	-	3	3			
CO4	3	3	1	3	1	1	-	-	-	-	3	3			
CO5	3	1	1	3	3	1	-	-	-	-	3	3			

Average	2.4 1.8	1 2.6 1.8	1	·	2.4 3
	CO-PSO Ma	pping Matrix for	r Course PH-CS	E-03(v)	
COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	-	3
CO2	3	2	2	-	3
CO3	3	2	3	-	3
CO4	3	2	3	-	3
CO5	3	2	3	-	3
Average	3	2	2.4	-	3

Unit-I

Graphical User Interface and the Operating System: Windowing Technology, Graphical User Interface, relationship between Operating System and the Windows, Components of GUI, requirement of a Windows based GUI

Security and Protection: Security Threats, Attacks on Security, Security Violation through Parameters, Computer Worms, Computer Viruses, Security Design Principles, Authentication, Protection Mechanism, Encryption, Security in Distributed Environment.

Unit-II

Processes: Process Model, Implementation of Processes, Threads, Inter-process Communication, Race Condition, Critical Section, Mutual Exclusion with Busy waiting, Sleep and Wakeup, Semaphores, Monitors, Message Passing. Classical IPC Problems, Process Scheduling, Round Robin, Priority, Multiple Queues, Shortest Job First, Guaranteed, Lottery, Real Time and Two-Level Scheduling.

Disk Performance Optimization: Moving Head Disk Storage, Disk Scheduling, Seek Optimization, Rotational Optimization, Disk Caching.

Unit-III

Distributed and Parallel Processing: Parallel Processing, Distributed Processing, Difference between Distributed and Parallel Processing, Advantages of Parallel Processing, Writing Programs for Parallel Processing, Machine Architecture supporting Parallel Processing, Operating System for Parallel Processors, Issues in Operating System in Parallel Processing.

Unit-IV

Distributed Operating Systems: Architecture of Distributed Systems, Networking, Interprocess Communication Protocols, Distributed Computation Paradigm, Network Operating System, Design issues in Distributed Operating System, Theoretical issues in Distributed Systems, Distributed Control Algorithms, Distributed Mutual Exclusion, Distributed Deadlock Handling, Distributed Scheduling Algorithms, Recovery and Fault Tolerance. Distributed File System, Distributed system Security.

Text Books

1. Operating Systems; Achyut S Godbole; Tata McGraw Hill Publishing Company Limited, New Delhi.

2. Operating Systems; A Concept based Approach; D. M. Dhamdhere; Tata McGraw Hill Publishing Company Limited, New Delhi.

Reference Book

1. Operating Systems-2nd Edition; H. M. Deitel; Pearson Education.

PH-CSE-03(vi) Advanced Database Systems															
Course Type	Course	Conta	let	Delivery	М	aximun	n Marl	ĸs	Exam	I	Assessi	ment			
	Credit	Hours/V	Veek	Mode	Ext	ernal	Intern	nal	Duratio	n	Metho	ods			
Compulsory Theory	04	04		Lecture		70	30		3 Hour	s A	ΓΕΕ/Μ Assignr Attend	ITE/ nent/ ance			
Instructions to paper setter for Final Term Examination: Final Term examination shall cover the whole content of the course. Total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective type questions from complete syllabus. In addition to compulsory first question there shall be four units in the question paper each consisting of two questions. Student will attempt one question from each unit in addition to compulsory question. All questions will carry equal marks. Course Objectives : The objective of this course is to get the students familiar with different concepts related to database.															
elated to databas	e.	1 0													
Course Outcon CO1	nes At th defin norm secur	e end of f e: 3-sche al forms, ity issues	this cou ma arcl data ty s, semar	rse, the st hitecture, pes, viev ntic data n	udent v ER dia vs in S nodels,	vill be a agrams, QL, coi and cli	EER EER ncurre ent ser	: model ncy co ver are	, funct	ional d echniqu ire.	epende ies, da	encies, tabase			
CO2	discu norm distri	iscuss: ER diagram, relational model, EER model, functional dependencies, ormal forms, SQL constraints and views, recovery techniques, data warehouse, and listributed databases.													
CO3	apply data s	istributed databases. pply: inheritance, SQL statements, normal forms, SQL constraints, dependencies, ata security, concurrency control and recovery techniques on database.													
CO4	categ const techr	ta security, concurrency control and recovery techniques on database. ategorized: subclass, super class, inheritance, SQL statements, normal forms, SQL constraints, dependencies, data security, concurrency control and recovery achniques													
CO5	justif const techr	y: subcl raints, fu	ass, su inctiona	techniques. justify: subclass, super class, inheritance, SQL queries, normal forms, SQL constraints, functional dependencies, security, concurrency control and recovery											
CO6	techniques.														
CO6 design: database for a particular application. CO-PEO Mapping Matrix for Course PH-CSE-03(vi)															
	desig	n: databa)-PEO N	se for a	particula g Matrix	r applio for Co	cation. urse P	H-CS	E-03(vi)						
COs	desig CC	n: databa)-PEO N)1	se for a Iapping PE	particula g Matrix EO2	r applio for Co	cation. urse P PEO3	H-CS	E-03(PE	vi) EO4		PEO	5			
COs CO1	desig CC PEC	n: databa)-PEO M)1	ise for a Iappinş PE	particula g Matrix EO2 1	r applio for Co	cation. urse P PEO3 3	H-CS	E-03(PE	vi) EO4 3		PEO 3	5			
COs CO1 CO2	desig C(PEC 1 2	n: databa)-PEO M)1	ise for a Iapping PE	particula g Matrix EO2 1 2	r applic	cation. urse Pl PEO3 3 3	H-CS	E-03() PE	vi) EO4 3 3		PEO 3 3	5			
COs CO1 CO2 CO3	desig CC PEC 1 2 3	n: databa)-PEO N)1	ise for a Iappinş PE	particula g Matrix EO2 1 2 3	r applic	eation. urse Pl PEO3 3 3 3 3	H-CS	E-03(PE	vi) EO4 3 3 3		PEO 3 3 3	5			
COs CO1 CO2 CO3 CO4	desig CC PEC 1 2 3 3	n: databa)-PEO M)1	ise for a Iapping PE	particula g Matrix EO2 1 2 3 3	r applio	eation. urse P PEO3 3 3 3 3 3	H-CS	E-03(PE	vi) 3004 3 3 3 3 3		PEO 3 3 3 3 3	5			
COs CO1 CO2 CO3 CO4 CO5	desig CC PEC 1 2 3 3 3	n: databa	ise for a Iapping PE	particula g Matrix EO2 1 2 3 3 3 3	r applio	eation. urse Pl PEO3 3 3 3 3 3 3 3	H-CS	E-03(PE	vi) 3 3 3 3 3 3 3		PEO 3 3 3 3 3 3 3	5			
COs CO1 CO2 CO3 CO4 CO5 CO 6	desig CC PEC 1 2 3 3 3 3	n: databa	ise for a Iapping PE	particula g Matrix EO2 1 2 3 3 3 3 3 3	r applid for Co	eation. urse Pl PEO3 3 3 3 3 3 3 3 3 3 3 3 3 3	H-CS	E-03(PE	vi) 304 3 3 3 3 3 3 3 3		PEO 3 3 3 3 3 3 3 3 3	5			
COs CO1 CO2 CO3 CO4 CO5 CO 6 Average	desig CC PEC 1 2 3 3 3 2.5	n: databa	ise for a fapping PE	particula g Matrix 302 1 2 3 3 3 3 3 2.5	r applio	eation. urse Pl PEO3 3 3 3 3 3 3 3 3 3 3 3 3 3	H-CS	E-03(PE	vi) 304 3 3 3 3 3 3 3 3 3 3		PEO 3 3 3 3 3 3 3 3 3	5			
COs CO1 CO2 CO3 CO4 CO5 CO 6 Average	desig CC PEC 1 2 3 3 2 3 2 3 2 3 2 2 3 2 2 2 3 2 C	n: databa)-PEO M)1	ise for a 1apping PE 2 apping	particula g Matrix EO2 1 2 3 3 3 3 3 2.5 Matrix f	r applio for Co ior Cou	eation. urse Pl PEO3 3 3 3 3 3 3 3 3 4 rse PH	H-CS	E-03(PE 2-03(v	vi) EO4 3 3 3 3 3 3 3 3 i)		PEO 3 3 3 3 3 3 3 3 3	5			
COs CO1 CO2 CO3 CO4 CO5 CO 6 Average	desig CC PEC 1 2 3 3 2 3 2 3 2 2 3 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 3 3 2 2 2 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3<	n: databa)-PEO M)1 5))))))))	ise for a Iapping PE 2 apping PO3	particula g Matrix EO2 1 2 3 3 2.5 Matrix f PO4	r applid for Co i or Cou PO5	eation. urse Pl PEO3 3 3 3 3 3 3 3 3 4 rse PH PO6	H-CS H-CS I-CSE	E-03(PE -03(v PO8	vi) EO4 3 3 3 3 3 3 3 3 i) PO9	PO10	PEO 3 3 3 3 3 3 3 3 9 011	5 PO12			
COs CO1 CO2 CO3 CO4 CO5 CO 6 Average COs CO1	desig CC PEC 1 2 3 3 2 3 2 3 2 3 2 2 3 2 2 3 2 2 3 2 2 2 3 2 2 2 3 3 2 2 2 3 3 3 2 2 4 5 6 6 7 1	n: databa)-PEO N)1 5 0-PO M PO2 3	Ise for a 1apping PE 2 apping PO3 1	particula g Matrix EO2 1 2 3 3 3 2.5 Matrix f PO4 1	r applid for Co i for Cou PO5 1	eation. urse Pl PEO3 3 3 3 3 3 3 3 3 3 4 rse PH PO6 1 	H-CS H-CS H-CS H-CS H PO7 -	E-03(PE C-03(v PO8	vi) 304 3 3 3 3 3 3 3 3 1) PO9 -	PO10	PEO 3 3 3 3 3 3 3 3 9 011 1	5 PO12 3			
COs CO1 CO2 CO3 CO4 CO5 CO 6 Average COs CO1 CO2	desig CC PEC 1 2 3 3 2 3 2 C PO1 1 2 2	n: databa)-PEO N)1 5 O-PO M PO2 3 1	Ise for a Iapping PE 2 apping PO3 1 1 1	particula g Matrix EO2 1 2 3 3 2.5 Matrix f PO4 1 3	r applic for Co	cation. urse Pl PEO3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 9 PO6 1 1	H-CS	E-03(PE C-03(v PO8 - -	vi) 3 3 3 3 3 3 3 3 3 3 1) PO9 -	PO10	PEO 3 3 3 3 3 3 3 3 3 9 011 1 2 2	5 PO12 3 3			
COs CO1 CO2 CO3 CO4 CO5 CO 6 Average COs CO1 CO2 CO3	desig CC PEC 1 2 3 3 2 3 2 3 2 3 2 0 1 2 3 2 3	5 0-PEO M 01 0-PO M PO2 3 1 1 1	Ise for a Iapping PE 2 apping PO3 1 1 1 1	particula g Matrix GO2 1 2 3 3 3 2.5 Matrix f PO4 1 3 3	r applic for Co or Cou PO5 1 1 3	cation. urse Pl PEO3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1	H-CS H-CS H-CS H-CS H PO7 - - -	E-03(PE C-03(v PO8 - - -	vi) 204 3 3 3 3 3 3 3 3 1) PO9 - - -	PO10	PEO 3 3 3 3 3 3 3 3 3 3 9 011 1 2 3	5 PO12 3 3 3			

CO5	3 1		1	1	3		1	-	-	-	-	3	3
CO6	3	3	3	3	3		1	-	-	-	-	3	3
Average	2.5	2	1.33	2.33	2		1	-	-	-	-	2.5	3
	CO-	PSO M	apping	Matrix	for C	Cour	rse: Pl	H-CS	E-03(vi)			
COs	PS	501		PSO2			PSO3		Р	SO4		PSO5	
CO1		3		2			1			-		3	
CO2		3		2			2			-		3	
CO3		3		2			3			-		3	
CO4		3		2		3			-			3	
CO5		3		2		3				-		3	
CO6		3		2			3			-		3	
Average		3		2			2.5			-		3	

Unit-I

Extended E-R Model: Subclasses, super classes and Inheritance, Specialization and Generalization, Constraints and Characteristics of Specialization and generalization.

Object-oriented Data Model : Object Identity, Object Structure, and Type constructors, Encapsulation of Operations, Methods and Persistence, Type Hierarchies and Inheritance, Complex Objects, Polymorphism, Multiple Inheritance, Versions and Configurations,

Object Relational Databases: Basic Concepts of Object-Relational systems, Object-Relational features of Oracle, An overview of SQL3, Object-Relational support in SOL3, Relational Data Model.

Unit-II

Further Normalization: Higher Normal Forms, Multivalued Dependencies and 4th normal Form, Join Dependencies and 5th Normal Form, Domain-key Normal Form.

Database System Architectures: Centralized systems, Client-Server Systems, Server System Architecture, Parallel Systems, and Distributed Systems.

Unit-III

Distributed Database and Client-Server Architecture: Distributed Database concepts. Data Fragmentation, Replication and Allocation Techniques for Distributed Database Design, Type of Distributed Database System, Overview of Concurrency Control and recovery in Distributed Databases. An Overview of Client-Server Architectures, Distributed Databases in Oracle.

Unit-IV

Data warehousing Concepts: Architecture, Data flows, Tools & Technologies, Data Marts, Data Mining & Online Analytical Processing

Web Interfaces to Databases: Web Fundamentals, Databases and the Web, Web Servers and Sessions, Providing access to Database on WWW. The Oracle Web server. Performance Tuning, Performance Benchmarks.

Enhance Data models for Advanced Applications: An Overview of active Databases. Spatial Databases, Deductive Databases, Multimedia Databases, Mobile Computing & Mobile Databases.

Text Books

1. Elmasri & Navathe: Fundamentals of Database systems, 3rd Edition, Addison Wesley New Delhi.

2. Korth & Siiberschatz: Database System Concepts, McGraw Hill International Edition.

- 1. Raghu Ramakrishnan & Johannes Gchrke: Database Management Systems, 2* edition, McGraw Hill International Edition.
- 2. Bipin C. Desai: An Introduction to Database System Galgotia Publication, New Delhi.

	PH-CS	5E-03(vii)	Data Com	municatio	n and Net	working	
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods
Core Compulsory	04	04 04 Lecture		70	30	3 Hours	TEE/MTE/ Assignment/
Theory	heory				20 5 3	5	Attendance

Instructions to paper setter for Final-Term Examination: The Final-Term examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives: The objective of this course is to make the students familiar with the topics of networking, data communication, modes of transmission, communication media, routing, error control and congestion control.

Course	At the end of	this course, the s	student will be ab	ole to:									
Outcomes													
CO1	define the ter including typ communication	rms and concept es of network to on, transmission	s of data commu opologies, referent modes and media	nication and concerned models, pro	omputer networking ptocols used in data multiplexing.								
CO.2	 understand and describe various concepts of data communication and computer networking including network topologies, reference models, protocols used in data communication, data transmission modes and transmission media, switching and multiplexing. apply the techniques learnt here in the design and evaluation of computer and 												
CO3	apply the tec communication network topo	hniques learnt h on networks and logy/switching/p	here in the design decide which control of the decide which control of the decide which control of the decide of t	n and evaluation mpeting commu gy will suit a par	on of computer and inication media, and rticular situation.								
CO4	 network topology/switching/protocol/technology will suit a particular situation. differentiate various types of: computer and data communication networks, network topologies, switching and multiplexing mechanisms, error control mechanisms, routing protocols, transmission modes, transmission media, congestion control techniques. 												
CO5	 congestion control techniques. compare, evaluate and choose between candidate: network topologies, transmission media, switching and multiplexing techniques, protocols and different layers, error control mechanisms, congestion control techniques. 												
	CO-PEO Ma	pping Matrix fo	or Course PH-C	SE-03(vii)									
COs	PEO1	PEO2	PEO3	PEO4	PEO5								
CO1	1	3	1	3	3								
CO.2	2	3	1	3	3								
CO3	3	3	1	3	3								
CO4	3	3	1	3	3								
CO5	3	3	1	3	3								
Average	2.4	3	1	3	3								
	CO-PO Mat	oping Matrix fo	r Course PH-CS	SE-03(vii)									

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POQ	PO10	PO11	PO12		
003	101	102	105	104	105	100	107	100	10)	1010	1011	1012		
CO1	1	3	1	1	1	-	3	1	-	2	-	-		
CO2	2	1	1	3	1	-	3	2	-	2	-	-		
CO3	3	1	1	3	3	-	3	3	-	2	-	-		
CO4	2	1	1	3	1	-	3	3	-	2	-	-		
CO5	2	1	3	1	3	-	3	3	-	2	-	-		
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-		
	СО-	PSO N	Mappi	ng Ma	trix fo	or Cou	rse PH	I-CSI	E-03(v	vii)	I	ļ		
COs	PS	01		PSO2		F	PSO3		PSG	04	PS	505		
CO1		3		2			3		1			-		
CO.2		3		2			3		2			-		
CO3	-	3		2			3		3			-		
CO4		3		2			3		3			-		
CO5	-	3		2			3		3			-		
Average		3		2			3		2	.4		-		

Unit-I

Basic concepts of analog and digital signals, data transmission concepts, Analog and digital data transmission, Analog to digital conversion, Digital to Analog conversion, transmission media, Shannon Capacity, Network Topologies, Switching, Multiplexing, Protocols and Standards, OSI (model, Transmission Media, Modems.

Unit-II

Data Link Layer: Data Link Layer Design issues, Error - detection and correction, Data Link Protocols, Sliding Windows Protocols, Protocols specification and Verification, Example Data Link Protocols, Medium Access Sublayer (Channel Allocation Problem, Multiple Access Protocols).

Unit-III

Network Layer: Network Layer Design Issues, Routing Algorithms, Congestion Control Algorithms, Network Layer in ATM Networks. Transport Layer - Transport Service, Elements of Transport Protocols, Performance Issues.

Unit-IV

Application Layer: Network Security, Domain Name System, SNMP, Electronic Mail, Multimedia. Mobile Databases.

Satellite Systems: History, Applications, Basics, Routing, Localization, Handover Broadcast Systems: Overview, Cyclic repetition of Data, Digital audio broadcasting, Digital video broadcasting, convergence of broadcasting and mobile communication.

Text Books

1. Behrouz A. Forouzan, "Data communication and Networking", Tata McGraw-Hill, 2004.

2. Andrew S. Tanenbaum, "Computer Networks", PHI, Fourth Edition, 2003.

Reference Book

1. William Stallings, "Data and Computer Communication", Sixth Edition, Pearson Education, 2000

	PH-CSE-03(viii) Advanced Software Engineering												
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment						
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods						
Core Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance						

Instructions to paper setter for Final-Term Examination: The Final-Term examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives: The objective of this course is to make the students familiar with the topics of software crisis, software engineering paradigms, software configuration management, design, coding, testing and maintenance.

Course	At t	At the end of this course, the student will be able to:										
CO1	enur deve	enumerate/define the concepts of: software and software engineering, software development paradigms, phases of software development, methods of assessing quality and reliability.										
	qual	ity and	l relia	bility.								
CO2	desc tech	lescribe and summarize: phases of software development process, testing techniques, relationship between reliability and quality.										
CO3	illus mair	illustrate various techniques of: requirement analysis, design, coding, testing and maintenance, quality and reliability.										
CO4	anal desi qual	yse ar gn me ity mo	nd cla ethodo dels.	ssify: s logies,	oftwai testin	re eng g tech	ineerin niques	g para , mair	adigmantenano	s, cost ce proc	estimati ess, reli	on models, iability and
CO5	com para tech	ipare idigm inique	and s, co s, ma	select ost es intenar	from timati ice pro	n amo on r ocess,	ongst nodels reliab	candi , de ility a	date: sign .nd qu	soft metho ality m	ware e dologie 10dels.	ngineering s, testing
CO-PEO Mapping Matrix for Course PH-CSE-03(viii)												
COs	Р	EO1		PEO	2]]	PEO3		PEC	04	Ι	PEO5
CO1		1		3			3		3			3
CO2		2		3			3		3			3
CO3		3		3			3		3			3
CO4		3		3			3		3			3
CO5		3		3			3		3			3
Average		2.4		3			3		3			3
	CO)-PO]	Mapp	ing Ma	trix fo	or Cou	ırse PI	H-CS	E-03(*	viii)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	2	1	-	2	-

CO2	2	1	1	3	1	-	3	2	1	-	2	-	
CO3	3	1	1	3	3	-	3	2	1	-	2	-	
CO4	2	1	1	3	1	-	3	2	1	-	2	-	
CO5	2	1	3	1	3	-	3	2	1	-	2	-	
Average	2	1.4	1.4	2.2	1.8	-	3	2	1	-	2	-	
	CO	-PSO	Mapp	oing Ma	atrix f	for Co	urse P	H-CS	SE-03((viii)			
COs	PS	01		PSO2		F	PSO3		PSC	04]	PSO5	-
CO1		3		3			3		1			-	-
CO2		3		3			3		2			-	-
CO3		3		3			3		3			-	
CO4		3		3	ĺ		3		3			-	
CO5		3		3			3		3			-	
Average		3		3			3		2.	4		-	

Unit-I

Introduction: Life cycle models, Requirement Analysis and specification, Formal requirements specification. Fundamental issues in software design, goodness of design, cohesions, coupling. Function-oriented design.

Unit-II

Structured analysis and design, overview of object -oriented concepts. Unified Modeling Language, unified design process.

Unit-III

User interface design, coding standards and guidelines, code walkthrough and reviews. Unit testing, black box and white box testing, integration and system testing. Software quality assurance and reliability modeling.

Unit-IV

SEI CMM, ISO 9001 and Six Sigma, clean room testing technique. Software maintenance issues and techniques. Software reuse. Client-Server software development, Personnel Software process, Soft Computing

Text Books

- 1. Mall, Rajib, Fundamentals of Software Engineering, PHI Learning Pvt. Ltd
- 2. Aggarwal, K.K, and Singh, Yogesh, Software Engineering, New Age International
- 3. Jalote, Pankaj, An Integrated Approach to Software Engineering, Narosa Publishing House.

Reference Book

1. Pressman, S. Roger, Software Engineering, Tata McGraw-Hill.

	PH-CSE-03(ix) Artificial Intelligence													
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment							
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods							
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance							

Instructions to paper setter for Final-Term Examination: The Final-Term examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives: The objective of this course is to provide an understanding of Artificial Intelligence techniques and their applications. Various search techniques and expert systems along with other components of artificial intelligence in computer science will be covered.

Course Outcomes	At th	ne end	of this	course	, the st	udent v	will be	able to:				
CO1	defin	ne: arti	ficial ii	ntellige	ence ter	ms, ty	pes of	search s	strategy	y, produ	action s	ystem,
	knov	wledge	repres	entatio	n, learı	ning teo	chniqu	es and g	genetic	algorit	hm	
	term	inolog	ies.									
CO2	expl	ain: the	e types	and pr	opertie	s of se	arch al	gorithm	n, pred	icate ca	lculus,	
	knov	vledge	repres	entatio	n and e	explore	the th	eories tl	hat der	nonstra	te intell	igent
	beha	vior in	cludin	g intell	igent e	ditor, l	earnin	g by ind	luction	and de	aling w	rith
CO2	unce	ertainty	stratos	w/gong	tio ala	orithm	/ fuggy	logia	ndloor	minato	ahniau	
005	use:	search	strateg	gy/gene	enc alg	orunn	Tuzzy	logic a	nd lea	ining te	cinique	.
CO4	class	sify typ	es of:	search	strateg	gy, pro	duction	n systen	n, learr	ning, op	erator of	of
	gene	tic alg	orithm	, know	ledge r	epresei	ntation	and app	proach	es that	deals w	ith
	unce	ertainty	•									
CO5	com	pare ar	nd selee	et types	s of: se	arch st	rategy,	produc	tion sy	vstem, l	earning	,
	oper	ator of	geneti	c algor	ithm, k	nowle	dge rej	presenta	tion a	nd appr	oaches	that
	deal	eals with uncertainty.										
	CO-P	PEO M	apping	g Matr	rix for	Cours	e PH-	CSE-0	3 (ix)			
COs	P	EO1		PEO	2	Р	EO3		PEO4		PEC	05
CO1		1		3			1		3		3	
CO2		2		3			1		3		3	
CO3		3		3		Ì	1		3		3	
CO4		3		3			1		3		3	
CO5		3		3		1	1		3		3	
Average	,	2.4 3 1 3 3										
	CO-	PO Ma	pping	Matri	x for (Course	PH-C	CSE-03	(ix)	·		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1 3 1 1 1 - 3 - 2										-

CO2	2	1	1	3	1	-	3	-	-	2	-	-
CO3	3	1	1	3	3	-	3	-	-	2	-	-
CO4	2	1	1	3	1	-	3	-	-	2	-	-
CO5	2	1	3	1	3	-	3	-	-	2	-	-
Average	2	1.4	1.4	2.2	1.5	-	3	-	-	2	-	-
	CO-F	SO M	apping	g Matr	ix fo	r Cours	e PH-0	CSE-03	B(ix)	ļ.	1	
COs	PS	501		PSO2		PS	03		PSO4		PSO	05
CO1		3		1		-	3		1		-	
CO2		3		1	Ì		3		2		-	
CO3		3		1			3		3		-	
CO4		3		1	İ	ź	3		3		-	
CO5		3		1		-	3		3		-	
Average		3		1		-	3		2.4		-	

Introduction: background and history, overview of AI applications areas.

The predicate calculus: syntax and semantic for propositional logic and FOPL, clausal form, inference rules, resolution and unification.

Knowledge representation: network representation, associative network & conceptual graphs, structured representation, frames & scripts.

Unit II

Search strategies: strategies for state space search, data-driven and goal driven search,

Search algorithms: uninformed search (depth-first, breadth-first, depth-first with iterative deepening) and informed search (hill climbing, best first, A* algorithm, mini-max etc.), computational complexity, properties of search algorithms, admissibility, monotonicity, optimality, dominance.

Unit III

Production system: types of production system-commutative and non-commutative production systems, decomposable and non-decomposable production systems, control of search in production systems.

Rule-based expert systems: architecture, development, managing uncertainty in expert systems, Bayesian probability theory, Stanford certainty factor algebra, nonmonotonic logic and reasoning with beliefs, Fuzzy logic, Dempster/Shaffer and other approaches to uncertainty.

Unit IV

Knowledge acquisition: types of learning, learning by automata, intelligent editors, learning by induction. Genetic algorithms: problem representation, encoding schemes, operators: selection, crossover, mutation, replacement etc.

Text Books

- 1. George F. Luger, Artificial Intelligence, Pearson Education.
- 2. Dan W. Patterson Introduction to Artificial Intelligence and Expert system, PHI.

- 1. Eugene Charniak, Drew McDermott, Introduction to Artificial Intelligence" Addison Wesley.
- 2. Wils J. Nilsson, Principles of Artificial Intelligence, Narosa Publishing house.
- 3. Jackson Peter, Introduction to Expert systems, 3e, Addison Wesley, 2000.

			Pl	H-CS	SE-03 ()	x)Mac	hine Le	earnin	g					
Course Type	Course	;	Contac	t	Deliver	ry	Maxir	num N	Iarks	E	xam	Asses	ssment	
	Credit		Hours/ Week	/	Mode	E	External	l In	iternal	Du	ration	Met	hods	
Optional Theory	04		04		Lectur	e	70		30	3 H	Iours	TEE/	MTE/	
								20	5	5		Assig	nment/	
								20	3	5		Atten	luance	
Instructions to p whole content of compulsory and addition to the co two questions. T question, All question	istructions to paper setter for Final-Term Examination: The Final-Term examination shall cover the vhole content of the course. The total number of questions shall be nine. Question number one will be ompulsory and will be consisting of short/objective-type questions from the complete syllabus. In ddition to the compulsory first question, there shall be four units in the question paper each consisting of vo questions. The student will attempt one question from each unit in addition to the compulsory uestion. All questions will carry equal marks.													
Course Outco	mes	At th	ne end o	of this	s course	, the st	udent v	vill be	able to):				
CO1 define: the terms of machine learning: types of machine learning, data preprocessing, classification, regression, and neurons.														
CO2	(explain: learning types, data preprocessing and architecture of ANN.												
CO3 apply: training and testing data using data pre processing and model selection techniques and classification, regression, clustering techniques according to their problem.														
CO4 Classify: data preprocessing, model selection, major architecture of deep networks;														
CO5	(comj	pare: d	ata p	reproces	ssing te	echniqu	les, nei	ural ne	twork,	deep no	etwork.		
CO-PEO Mapping Matrix for Course PH-CSE-03(x)														
COs		Р	EO1		PEC)2	P	EO3		PEO4	ŀ	PEO	05	
CO1			1		3			1		3		3		
CO2			2		3			1		3		3		
CO3			3		3			1		3		3		
CO4			3		3			1		3		3		
CO5			3		3			1		3		3		
Average		° 0- 1	2.4 PO Ma	nnin	3 o Matr	ix for (Course	1 PH-0	CSE-0	3 3(x)		3		
COs		01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		1	3	1	1	1		3	_	_	_	_	_	
CO2		2	1	1	3	1	_	3	_	_	_	_	_	
CO3		- 3	1	1	3	3	_	3	_					
CO4		2	1	1	3	1	_	3	-				-	
		2	1	3	1	3	- 3				-	-	-	
005													1 I I I I I I I I I I I I I I I I I I I	

CO-PSO Mapping Matrix for Course PH-CSE-03(x)												
COs	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	1	3	1	-							
CO2	3	1	3	2	-							
CO3	3	1	3	3	-							
CO4	3	1	3	3	-							
CO5	3	1	3	3	-							
Average	3	1	3	2.6	-							

Basics of Machine Learning: Introduction to artificial Intelligence and machine learning, types of machine learning and its comparisons, applications of machine learning, issues in machine learning.

Unit II

Preparing to Model: Introduction, machine learning activities, types of data in machine learning, exploring structure of data, data pre-processing (dimension reduction and feature subset selection), model selection.

Unit III

Supervised Learning: Introduction, classification (introduction, classification model, learning steps, common classification algorithm), regression (linear regression, multivariable regression, logistic regression).

Unit IV

Unsupervised Learning: Introduction and its applications, techniques in unsupervised learning (clustering, K-means).

Neural Network: Introduction, architecture of artificial neural network.

Text Books

- 1. Tom M. Mitchell, Machine Learning, McGraw-Hill Education (India) Private Limited.
- 2. Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press.

- 1. Stephen Marsland, Machine Learning: An Algorithmic Perspective, CRC Press.
- 2. Peter Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press.
- 3. Peter Harrington, Machine Learning in Action, Manning Shai Shalev Shwartz and Shai Ben David,
- 4. Understanding Machine Learning From Theory to Algorithms, Cambridge University Press

			Р	H-CS	SE-03(xi) De	ep Lea	rning	5				
Course Type	Course		Contac	t I	Delive	ry	Maxir	num M	larks	E	xam	Asses	sment
	Credit		Hours, Week	/	Mode	E	External	In	ternal	Du	ration	Met	hods
Optional Theory	04		04		Lectur	e	70		30	3 H	Iours	TEE/	MTE/
								20	5 5	;		Assig Atten	nment/ dance
nstructions to paper setter for Final-Term Examination: The Final-Term examination shall cover the vhole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of wo questions. The student will attempt one question from each unit in addition to the compulsory juestion. All questions will carry equal marks.Course OutcomesAt the end of this course, the student will be able to : define: the terms of machine learning and deep learning, data preprocessing, classification, regression, neural network;CO2explain: learning types, data preprocessing and architecture of ANN.CO3apply: training and testing data using data preprocessing and model selection techniques and classification, regression, clustering techniques, CNN, RNN, according to their problem.CO4classify: data preprocessing, model selection, 													
		earn	ing.		a Matr	iv for	Course			3(vi)			
COs		0-г . Р	EO Ma	appin	PEC)2	P	EO3	SE-0	PEO4	L	PE	05
CO1		-	1		3	-		1		3		3	
CO2			2		3			1		3		3	
CO3			3		3			1		3		3	
CO4			3		3			1		3		3	
CO5			3		3			1		3		3	
Average			2.4		3			1		3		3	
	(2 0- F	PO Ma	pping	Matri	ix for (Course	РН-С	SE-03	(xi)			
COs	P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1	3	1	1	1		3	_	_	_	_	_
CO2		2	1	1	3	1		3	_	-	-	_	-
CO3		3	1	1	3	3	_	3	_	-	-	_	_
		2	-	1	3	1		3	_				
CO4			-	-	. –	. –		-					
CO4 CO5		2	1	3	1	3		3	_	-	-	_	-

CO-PSO Mapping Matrix for Course PH-CSE-03(xi)												
COs	PSO1	PSO2	PSO3	PSO4	PSO5							
C01	3	1	3	1	-							
CO2	3	1	3	2	-							
CO3	3	1	3	3	-							
CO4	3	1	3	3	-							
CO5	3	1	3	3	-							
Average	3	1	3	2.6	-							
					•							

Machine Learning Review: Introduction, math behind machine learning (vector, scalars, matrices, statistics, probability), How Machine Learning works: Regression, Classification, Underfitting, overfitting, gradient descent, logistic regression, confusion matrix.

Unit II

Foundation of Deep Learning: neural network, activation function (linear, sigmoid, tanh, softmax), loss function for (notation, regression, classification, recontruction), hyperparameters (learning rate, regularization, momentum, sparsity).

Unit III

Fundamental of Deep Networks: common architectural principles, building block of deep network; Major architectures of Deep Network: unsupervised pretrained network, generative adversarial network, convolutional neural network, recurrent neural network, recursive neural network;

Unit IV

Building Deep Networks: columnar data and multilayer perceptron, images and CNN, time series sequences and RNN, modeling csv data with multilayer perceptron network, modeling handwritten images using CNN, modeling sequence data using RNN, application of deep learning in NLP.

Text Books

- 1. Josh Patterson & Adam Gibson, Deep Learning A Practitioner's Approach, O'Reilly Publishers, 2017.
- 2. Nikhil Buduma, Fundamentals of Deep Learning, O'Reilly, 2017.

Reference Book

1. Ian Goodfellow, Deep Learning (Adaptive, computation and machine learning), The MIT Press, 2016

Course Type	Course	Contact	Delivery	Maximu	num Marks			Exam	Assessment
	Credit	Hours/Week	Mode	External				Duration	Methods
Optional Theory	04	04	Lecture	70		30		3 Hours	TEE/MTE/ Assignment
Theory					20 5	5	5		/ Attendance

Instructions to paper setter for Final-Term Examination: The Final-Term examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives: The objective of this course is to get the students familiar with the concepts and processes of Data Science including collection, filtering, processing, analysis and visualization.

Course Outcomes	At the end of this course, the student will be able to :
CO1	define: data science process, classification of data, big data, web data, sampling, data analysis techniques-correlation, regression, mean, mode, kurtosis, Bayesian inference etc., neural network, fuzzy logic, rule of mining, hadoop, hive, cloud database, and visualization.
CO2	understand and describe: graphical representation of data, storage and retrieval of data, evolution of analytic scalability, sampling distribution, data analysis techniques, Bayesian model and network, induction rule, neural network, fuzzy logic, data mining techniques, data analysis framework and visualization.
CO3	use: data science process, modern data analytic tools, statistical concepts, data analysis techniques, Bayesian network, induction rule, fuzzy logic, data mining techniques, hadoop file system, hive, S3, cloud database, inference and visualization.
CO4	categorize: analytic processes and tools, analysis, reporting, sampling and re- sampling, data analysis techniques, linear and non-linear time series, sequential, temporal and spatial mining, egonets systems and application.
CO5	choose: data science process, data storage, data analytic tools and processes, sampling method, data analysis technique, time series, mining techniques, visual data analysis framework and technique suitable in given situation.

COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
Average	2.4	3	1	3	3

	CC)-PO	Mappi	ng Mat	rix for (Course	PH-C	CSE-03	B(xii)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	-	-	1	-	-	
CO2	2	1	1	3	1	-	3	-	-	1	-	-	
CO3	3	1	1	3	3	-	3	-	-	1	-	-	
CO4	2	1	1	3	1	-	3	-	-	1	-	-	
CO5	2	1	3	1	3	-	3	-	-	1	-	-	
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	1	-	-	
	CO	-PSO	Mapp	ing Mat	trix for	Course	PH-	CSE-0	3(xii)				
COs	Р	SO1		PSO2	P	SO3		PSO4	Ļ	PSO5			
CO1		3		1	3			1		-			
CO2		3		1			3		2		-		
CO3		3		1			3		3			-	
CO4		3		1			3		3			-	
CO5		3		1		3			3		-		
Average		3		1			3		2.4		-		

Introduction to Data Science : data science process, exploratory data analysis, collection of data, graphical presentation of data, classification of data, storage and retrieval of data, big data, challenges of conventional systems, web data, evolution of analytic scalability, analytic processes and tools, analysis vs reporting, modern data analytic tools;

Statistical Concepts: sampling distributions, re-sampling, statistical inference, prediction error.

Unit II

Data Analysis: Correlation, regression, probability, Conditional probability, random variables, analysis using mean, median, mode, standard deviation, skewness, kurtosis, regression modeling, multivariate analysis, Bayesian modeling, inference and Bayesian networks, support vector and kernel methods; Analysis of Time Series: linear systems analysis, nonlinear dynamics.

Unit III

Data Mining Techniques: Rule induction: neural networks: learning and generalization, competitive learning, principal component analysis and neural networks;

Fuzzy Logic: extracting fuzzy models from data, fuzzy decision trees, stochastic search methods, neuro fuzzy modeling,

Association Rule Mining: clustering, outlier analysis, sequential pattern mining, temporal mining, spatial mining, web mining

Unit IV

Data Analysis Frameworks and Visualization: Map Reduce, Hadoop, Hive, sharding, NoSQLdatabases, cloud databases, S3, Hadoop Distributed File Systems, visualizations, visual data analysis techniques, interaction techniques, social network analysis, collective inferencing, Egonets systems and applications.

Text Books

1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.

2. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.

- 1. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley & Sons, 2012.
- 2. Jiawei Han, Micheline Kamber "Data Mining Concepts and Techniques", 2e, Elsevier.
- 3. Rachel Schutt, Cathy O'Neil, "Doing Data Science", O'Reilly Publishers, 2013.
- 4. Foster Provost, Tom Fawcet, "Data Science for Business", O'Reilly Publishers, 2013.

			PH	-CSE-03	B(xiii)) Big Da	ta Anal	lytics					
Course	С	ourse		Contact	Γ	Delivery	Maxi	mum	Mark	s	E	xam	Assessme
Туре	С	redits		Hours/ Week		Mode	Extern	al I	nterna	al	Du	ration	nt Methods
Optional		04		04	I	Lecture	70		30	30 3		Hours	TEE/MT
Theory								20	5	5			E/ Assignme
													nt/
													Attendan ce
Instructions to paper setter for Final-Term Examination: The Final-Term examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.													
Course Objective Data and their rea	es: The lizatio	e objecti n/implen	ve of nentat	this cour ion using	se is t g Had	to get the loop and l	students Map Rec	s fami luce to	liar w ool se	vith ets.	differe	ent conc	epts of Big
Course Outco	mes	At the	end o	f this co	urse,	the stud	ent will	be al	ole to):			
CO1		define: Unix to Strategy SQL.	define: Big Data and Hadoop, digital data, Apache Hadoop, analysing Data with Unix tools and Hadoop, Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy, HDFS, Hadoop Ecosystem, Pig, Hive shell and services, HBasics, Big SOL.										
CO2		underst	and ai	nd descr	ibe: E	Big Data a	nd Hado	oop, A	nalys	sing	Data	with Ha	doop,
		Hadoop Distribu task exe	Stre ted F cutio	eaming, File Syste n, Hadoo	Hado m, co p Eco	op Echo ommand l osystem, l	Systen line inte Pig, Hiv	n, IB rface, eQL, l	M Bi job s Hbase	ig 1 sche e.	Data duling	Strategy g, shuffl	v, Hadoop e and sort,
CO3		apply a comman	and u nd lin	se: Apao e interfac	che H ce, Ha	Hadoop, 1 adoop file	HDFC,H system	IBasic interf	; Big aces,	g D data	ata a a flow	nd Had , Hive s	oop,HDFS ervices.
CO4		classify shell, H	: Big live se	Data an prvices.	d Hao	loop, Big	Data A	nalyti	cs, Aj	pacł	ne Hao	doop, H	DFS ,Hive
CO5		Compar	re feat	ture set o	f Pig,	Hadoop,	HDFS.						
		CO-PE	EO M	apping N	Aatri	x for Cou	urse PH	-CSF	2 -03 (xiii))		
COs	P	EO1		PEO2		PEC	03		PEC)4		P	EO5
CO1		1		3		1			3				3
CO2		2		3		1			3				3
CO3		3		3		1			3				3
CO4 CO5		3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							<u> </u>			
Average		2.4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							3			
	<u> </u>	CO-PO Mapping Matrix for Course PH-CSE-03(xiii)							-				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO1	0 PO1	l PO12
CO1	1	3	1	1	1	-	3	-	-		1	-	-
CO2	2	1	1	3	1	-	3	-	-		1	-	-
CO2	3	1	1	3	3	-	3	-	-		1	-	-

CO4	2	1	1	3	1	-	3	-	-	1	-	-
CO5	2	1	3	1	3	-	3	-	-	1	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	1	-	-
CO-PSO Mapping Matrix for Course PH-CSE-03(xiii)												
COs		PSO1		PSG	02	PS	503	Р	SO4	P	SO5	
CO1		3		1			3		1		-	
CO2		3		1			3		2		-	
CO3		3		1			3		3		-	
CO4		3		1			3		3		-	
CO5		3		1			3		3		-	
Average		3		1			3		2.4		-	

Introduction to Big Data and Hadoop, Types of digital data, introduction to Big Data, Vs of Big Data, Big Data Analytics, History of Hadoop, Apache Hadoop, analysing Data with Unix tools, Analysing Data with Hadoop, Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy, Big Data applications.

Unit II

HDFS (Hadoop Distributed File System), design of HDFS, HDFS concepts, command line interface, Hadoop file system interfaces, data flow, data ingest with flume and Scoop and Hadoop archives, Hadoop I/O: compression, serialization, Avro and file-based data structures.

Unit III

Map Reduce: Anatomy of a Map Reduce job run, failures, job scheduling, shuffle and sort, task execution, Map Reduce types and formats, Map Reduce features.

Unit IV

Hadoop Ecosystem, Introduction to Pig, execution modes of Pig, comparison of Pig with databases, grunt, Pig latin, user defined functions, data processing operators. Hive, Hive shell, Hive services, Hive metastore, comparison with traditional databases, HiveQL, tables, querying data and user defined functions.

Text Books

- 1. Tom White "Hadoop: The Definitive Guide" Third Edit on, O'Reily Media, 2012.
- 2. Seema Acharya, Subhasini Chellappan, "Big Data Analytics", Wiley 2015.
- 3. Arvind Sathi, "Big Data Analytics: Disruptive Technologies for Changing the Game", MC Press

- 1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.
- 2. Jay Liebowitz, "Big Data and Business Analytics" Auerbach Publications, CRC press (2013)
- 3. Anand Rajaraman and Jeffrey David Ulman, "Mining of Massive Datasets", Cambridge University Press, 2012.

	PH-CSE-03(xiv) Wireless Networks												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Optional Theory	04 04	Lecture	70	30	3 Hours	TEE/MTE/							
					20 5 5		Assignment/ Attendance						

Instructions to paper setter for Final-Term Examination: The Final-Term examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives: To study fundamental concepts in wireless network, various LAN standards, IP and IPV6 Layer, Transmission protocols and WAN standards.

Course Outcomes	At the end of this course, the student will be able to:
CO1	define: wireless LAN, architecture, mobile network layer, mobile transport layer
	and wireless wide area network.
CO2	describe: WLAN technologies, IEEE 802.11 types , IEEE 802.16, Bluetooth,
	IPV6, mobile ad-hoc network, TCP enhancements for wireless network, UTMS,
	3G-MSC, 3G-SGSN, 3G-GGSN, applications of 4G, features and challenges of
	5G.
CO3	illustrate: wireless LAN, system architecture, physical layer, Mac layer, Bluetooth
	architecture, mobile IP, mobile ad-hoc network, mobile transport layer, TCP
	improvements, wireless wide area network, HSDPA, features and challenges of
	4G, 5G.
CO4	analyze: WLAN technologies, 802.11b, 802.11a, IEEE 802.16, IPV6,
	Routing, TCP enhancements, TCP improvements, UMTS core network
	architecture, firewall, 3G, 4G and 5G networks.
CO5	compare: different Wireless LAN technologies, mobile network layer,
	mobile transport layer, Mobile IP, mobile ad-hoc networks, protocols, TCP
	improvements and wireless WAN types.

CO-PEO Mapping Matrix for Course PH-CSE-03(xiv)

COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
Average	2.4	3	1	3	3

CO-PO Mapping Matrix for Course PH-CSE-03(xiv)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	_	3	1	_	2	_	_
CO2	2	1	1	3	1	-	3	2	-	2	_	-
CO3	3	1	1	3	3	_	3	3	-	2	-	-
CO4	2	1	1	3	1		3	3	-	2	-	-
CO5	2	1	3	1	3	-	3	3	-	2	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-

CO-PSO Mapping Matrix for Course PH-CSE-03(xiv)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	1	-
CO2	3	2	3	2	-
CO3	3	2	3	3	-
CO4	3	2	3	3	-
CO5	3	2	3	3	-
Average	3	2	3	2.4	-

Unit I

Wireless LAN: Introduction-WLAN technologies: Infrared, UHF narrowband, spread spectrum - IEEE802.11: System architecture, protocol architecture, physical layer, MAC layer, 802.11b, 802.11a – Hiper LAN: WATM, BRAN, HiperLAN2 – Bluetooth: Architecture, Radio Layer, Baseband layer, Link manager Protocol, security - IEEE802.16-WIMAX: Physical layer, MAC, Spectrum allocation for WIMAX.

Unit II

Mobile Network Layer: Introduction - Mobile IP: IP packet delivery, Agent discovery, tunneling and encapsulation, IPV6- Network layer in the internet- Mobile IP session initiation protocol - mobile ad-hoc network: Routing, Destination Sequence distance vector, Dynamic source routing.

Unit III

Mobile Transport Layer :TCP enhancements for wireless protocols, Traditional TCP: Congestion control, fast retransmit/fast recovery, Implications of mobility - Classical TCP improvements: Indirect TCP, Snooping TCP, Mobile TCP, Time out freezing, Selective retransmission, Transaction oriented TCP, TCP over 3G wireless networks.

Unit IV

Wireless Wide Area Network: Overview of UTMS Terrestrial Radio access network-UMTS Core network Architecture: 3G-MSC, 3G-SGSN, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS/DHCP-High speed Downlink packet access (HSDPA)- LTE network architecture and protocol, features and challenges of 4G, Applications of 4G, Introduction to 5G vision,5G features and challenges.

Text Books

1. Jochen Schiller, "Mobile Communications", 2e, Pearson Education 2012.

2. Vijay Garg, "Wireless Communications and Networking", 1e, Elsevier, 2007.

- 1. William Stallings, Wireless Communications and Networks, Pearson/Prentice Hall of India.
- 2. Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA and LTE for Mobile Broadband", 2e, Academic Press, 2008.
- 3. Anurag Kumar, D. Manjunath, Joy Kuri, "Wireless Networking", 1e, Elsevier 2011.
- 4. Simon Haykin, Michael Moher, David Koilpillai, "Modern Wireless Communications", 1e, Pearson Education, 2013.

PH-CSE-03(xv) Network Security

Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment(s)/
5					20 5 5		Attendance

Instructions to paper setter for Final-Term Examination: The Final-Term examination shall cover the whole content of the course. The total number of questions shall be nine. Question number one will be compulsory and will be consisting of short/objective-type questions from the complete syllabus. In addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.

Course Objectives: To study fundamental concepts in Network Security, security attack, cryptography, authentication, web security, system and email security.

Course Outcomes	At the end of this course, the student will be able to :
CO1	define: computer security, security standards, cipher model, encryption techniques,
	data encryption standards, public-key cryptography, security at transport layer,
	SSL/TSL attacks, wireless security and IEEE 802.11i.
CO2	explain: computer concepts related with the security, symmetric techniques, advanced
	encryption standard, RSA, concept of digital signature, security protocols, wireless
	security measures and email security.
CO3	illustrate: the different features related with computer security, encryption and
	symmetric techniques, data encryption standards, security at transport layer and
	wireless LAN security.
CO4	classify: the information about security, its architecture, types of attacks,
	security mechanism, encryption standards, protocols at transport layer and
	wireless LAN security.
CO5	evaluate: the security trends, security mechanisms, cipher model, RSA, Diffie-
	Hellman key exchange, transport layer security, SSL/TSL attacks, wireless
	security and IP security.

CO-PEO Mapping Matrix for Course PH-CSE-03(xv)

COs		PEO1		Р	EO2]	PEO3		PEO4	P	EO5	
CO1		1		3				1		3		3	
CO2		2			3			1		3	3		
CO3		3			3			1		3		3	
CO4		3			3			1		3		3	
CO5		3			3			1		3		3	
Average		2.4		3				1		3		3	
	1	CC)-PO N	lappin	g Mat	rix for	Cours	se PH-C	CSE-03	(xv)			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	1	-	2	-	-	
CO2	2	1	1	3	1	-	3	2	-	2	-	-	
CO3	3	1	1	3	3	-	3	3	-	2	-	-	

CO4	2	1	1	3	1	-	3	3	-	2	-	-	
CO5	2	1	3	1	3	-	3	3	-	2	-	-	
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-	
CO-PSO Mapping Matrix for Course PH-CSE-03(xv)													
COs		PSO1			PSC	02		PSO3		PSO4	PS	505	
CO1			3		2			3		1	-		
CO2			3		2			3		2		-	
CO3			3		2			3		3		-	
CO4			3		2			3		3		-	
CO5		3			2			3		3		-	
Average			3		2			3		2.4		-	

Computer Security Concepts – Introduction, security, security trends, components of information system, OSI security architecture, security attacks, goals for security, security mechanisms, security standards. Cipher model, cryptanalysis and brute-force attack, classical encryption techniques – symmetric techniques – substitution techniques, transposition techniques, rotor machines, steganography.

Unit II

Traditional block cipher, data encryption standard, encryption and decryption, advanced encryption standard, structure and expansion functions.

Public-key cryptography, principles, applications and requirements, RSA, Diffie-Hellman key exchange. Concept of digital signature.

Unit III

Security at Transport Layer, web security considerations, Transport Layer Security, TLS record protocol, change cipher spec protocol, alert protocol, handshake protocol, heart-beat protocol; SSL/TSL attacks; HTTPS; Secure shell; user authentication protocol, connection protocol.

Unit IV

Wireless Security, wireless security measures, mobile device security - threats and strategy.

Wireless LAN security, IEEE 802.11i - services, operation and phases.

Email security, S/MIME, PGP, overview of IP security.

Text Books

- 1. William Stallings, Cryptography And Network Security Principles And Practice, Pearson Education
- 2. Forouzan, Mukhopadhyay, Cryptography & Network Security, McGraw Hill

- 1. Atul Kahate, Cryptography and Network Security, TMH Godbole,
- 2. Information Systems Security, Wiley India Mark Stamp, Information Security Principles and Practice, Willy India

			PH	-CSE	-03(xvi)) Clo	ud Com	puting	5						
Course Type	Course Contact Delivery				Maxim	num Ma	arks	Exan	n A	Assessment					
	Cre	dıt 1	Hours/\	Neek	Mode	e]	External	Inte	rnal	Durati	on	Methods			
Compulsory	04	4	04	Lecture 70 30 3 Hours						irs [TEE/MTE/				
Theory								20	5 5	5 5		Assignment/ Attendance			
nstructions t he whole cont be compulsory ddition to the of two question question. All q Course Objec	o paper ent of the and will compute ns. The uestions tives: T	setten ne cour ll be co sory fi studen will co o study	for Firse. The onsisting rst quest at will a arry equest	inal-Te total r g of sh stion, th attempt ual man	erm Exa number of nort/obje here sha one qu rks. ntal con	amina of que ective- ll be f estion	ntion: Th estions sh -type que four units n from ea of cloud	e Final all be r estions s in the ch unit	Term nine. Q from th question in add	examin uestion ne comp on pape: lition to s enabli	ation sinumber plete sy r each o the co	hall cover r one will /llabus. In consisting ompulsory			
cloud service	models	and	securit	y cond	cerns, t	o lea	rn core	issues	of In	ternet	of Thi	ngs, IOT			
	At the	end of	this co	urse. fl	he stude	nt wil	l be able	to:]			
Outcomes															
COI	define virtual	define cloud computing: evolution, characteristics, working, service models, virtualization, architecture, security challenges and risks.													
CO2	unders	understand and describe cloud computing: evolution, characteristics, working, service													
CO3	models	models, virtualization, architecture, security challenges and risks.													
CO4	classif	y: clou	id comp	outing:	service	mode	ls, servic	e-orien	ted arc	,. hitectur	e.				
CO5	compa	re clou	ıd comj	outing:	service	mode	els. virtua	lization	n, and l	ypervis	sors.				
	(CO-PI	EO Ma	pping	Matrix	for C	Course P	H-CSI	E-03(x	vi)	I				
COs	-	PEO1		I	PEO2		PEC)3	F	PEO4	-	PEO5			
CO1		1			3		1			3		3			
CO2		2			3		1			3		3			
CO3		3			3		1			3		3			
CO4		3			3		1			3		3			
CO5		3			3		1			3		3			
Average		2.4			3		1			3		3			
		CO-P	O Map	oping N	Matrix f	for Co	ourse PH	I-CSE	-03(xv	ri)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	6 PO7	PO8	PO9	PO10	PO11	PO12			
<u>CO1</u>	1	3	1	1	1	 _	3	1	_	2	_				
CO^2	2	1	1	2			2	2	_	2					
CO2	2	1	1	2		-	2		_	2	_	_			
CO4	5 1	1		2	1	-	2	2	-		-	-			
C04	2	1		3		- 	2	2	-	2	-	-			
	2		3	1	5	-	5	3	-	2	-	-			
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-			

CO-PSO Mapping Matrix for Course PH-CSE-03(xvi)														
COs	PSO1	PSO2	PSO3	PSO4	PSO5									
CO1	3	3	3	1	-									
CO2	3	3	3	2	-									
CO3	3	3	3	3	-									
CO4	3	3	3	3	-									
CO5	3	3	3	3	-									
Average	3	3	3	2.4	-									

UNIT I

Introduction, Essentials, Benefits and need for Cloud Computing, Business and IT Perspective, Cloud and Virtualization, Cloud Services Requirements, Cloud and Dynamic Infrastructure, Cloud Computing Characteristics Cloud Adoption. Cloud Characteristics, Measured Service, Cloud Models, Security in a Public Cloud Public versus Private Clouds, Principal Technologies, Cloud Strategy Cloud Design and Implementation using SOA, Conceptual Cloud Model, Cloud Service.

UNIT II

Cloud Solutions, Cloud Ecosystem, Cloud Business Process Management, Cloud Service Management, Cloud Stack, Computing on Demand (CoD), Cloud sourcing, Cloud Offerings, Information Storage, Retrieval, Archive and Protection, Cloud Analytics Testing under Cloud, Information Security, Cloud Governance, High Availability and Disaster Recovery, Charging Models, Usage Reporting, Billing and Metering.

UNIT III

Virtualization, Benefits, Server Virtualization, Virtualization for x 86 Architecture, Hypervisor Management Software, Logical Partitioning (LPAR), VIO Server, Virtual Infrastructure Requirements, Storage virtualization, Storage Area Networks, Network-Attached storage, Cloud Server Virtualization, Virtualized Data Centre.

UNIT IV

SOA Journey to Infrastructure, SOA and Cloud, SOA Defined, SOA and IaaS, SOA-based Cloud Infrastructure Steps, SOA Business and IT Services, OLTP Benchmark, Business Intelligence Benchmark, e-Business Benchmark, ISV Benchmarks, Cloud Performance Data Collection and Performance Monitoring Commands, Benchmark Tools.

Text Books

- 1. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing a Practical Approach, Tata McGraw Hill, New Delhi, 2010
- 2. Robert Elsenpeter, Toby J. Velte, Anthony T. Velte, Cloud Computing: A Practical Approach, 1e, Tata McGraw Hill Education, 2011.
- 3. Judith Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper, Cloud Computing for Dummies, Wiley Publishing, 2010

- 1. Rajkumar Buyya, James Broberg, Andrzej Goscinski, Cloud Computing- Principles and Paradigms, Wiley, 2011.
- 2. Raj Kamal, Internet of Things-Architectures and Design Principles, McGraw Hill Education, 2017.

PH-CSE-03(xvii) Internet of Things																							
Course Type	e Course Contact Delivery Maximum Marks Exam Assessment																						
	Cree	dit H	Hours/N	Neek	Mod	e I	External	Inte	rnal	Durati	on	Methods											
Compulsory	04	1	04		Lectu	re	70	3	0	3 Hou	rs 7	TEE/MTE/											
Theory								20	<u> </u>		A	ssignment/											
. .								20	5 5														
Instructions t the whole cont	o paper	setter	for Fi se The	i nal-Te i total n	rm Exa	amination of que	tion: Th stions sh	e Final all be i	l-Term	examination	ation sl numbe	hall cover											
be compulsory	and wil	l be co	onsistin	g of sh	ort/obje	ective-	type que	estions	from th	he comp	olete sy	llabus. In											
addition to the compulsory first question, there shall be four units in the question paper each consisting of two questions. The student will attempt one question from each unit in addition to the compulsory																							
ot two questions. The student will attempt one question from each unit in addition to the compulsory question. All questions will carry equal marks.																							
Question. All questions will carry equal marks.																							
Course Objectives: To study the fundamental concepts of cloud computing, its enabling technologies, cloud service models and security concerns, to learn core issues of Internet of Things. IOT																							
communication protocols and security concerns.																							
Course	At the	end of	this co	ourse, th	e stude	nt will	be able	to:															
Outcomes	1.0	6						<u> </u>		1 11													
COI	define:	define: framework, architecture, design, communication challenges, applications, principles of web connectivity																					
CO2	underst	understand and describe: framework, architecture, design, communication challenges,																					
002		applications, principles of web connectivity.																					
CO2	applica	uions, j		1 1				CI T		C' 1	1	use: for Wireless Technologies and Applications of IoT in various fields											
CO2 CO3	applica use: for	r Wirel	less Te ework	chnolog archite	gies and	1 Appl	ications	of IoT gical d	in vario esign	ous field	ls												
CO3 CO4 CO5	applica use: for classify compar	r Wirel y: fram re: con	less Te ework, nmunic	chnolog , archite cation c	gies and ecture, p halleng	d Appl physics ges, sec	ications al and lo curity iss	of IoT gical d sues, er	in vario esign. nabling	ous field technol	ds logies,	application											
CO3 CO4 CO5	applica use: for classify compar areas, a	r Wirel r Wirel r: fram re: con and pro	less Te lework, nmunic otocols.	chnolog , archite cation c	gies and ecture, j halleng	1 Appl physica ges, sec	ications al and lo curity iss	of IoT gical d sues, er	in vario esign. nabling	ous field technol	ds logies,	application											
CO3 CO4 CO5	applica use: for classify compar areas, a	r Wirel y: fram re: con and pro	ework nmunic otocols EO Ma	chnolog , archite cation c apping	gies and ecture, j halleng Matrix	Appl physics ges, sec	ications al and lo curity iss	of IoT gical d sues, er H-CS	in vario esign. nabling E-03(x	technol	ls logies,	application											
CO3 CO4 CO5 COs	applica use: for classify compar areas, a	r Wirel y: fram re: con and pro CO-PI PEO1	ework, nmunic otocols.	chnolog , archite cation c apping	gies and ecture, j halleng Matrix PEO2	Appl ohysica ges, sec	ications al and lo curity iss course P	of IoT gical d sues, er H-CS PEO3	in vario esign. nabling E-03(x	technol wii)	ls logies, O4	application PEO5											
CO3 CO4 CO5 COs CO1	applica use: for classify compar areas, a	r Wirel y: fram re: con and pro CO-PI PEO1 1	ework, nmunic otocols.	chnolog , archite cation c	gies and ecture, j halleng Matrix PEO2 3	Appl physica des, sec	ications al and lo curity iss Course P	of IoT gical d sues, er H-CS PEO3 1	in vario esign. nabling E-03(x	technol (vii) PE	logies, O4	application PEO5 3											
CO3 CO4 CO5 COs CO1 CO2	applica use: for classify compar areas, a	r Wirel r Wirel r: fram re: con and pro CO-PI PEO1 1 2	ework. nmunic otocols.	chnolog , archite cation c apping	gies and ecture, j halleng Matrix PEO2 3 3	a for C	ications al and lo curity iss Course P	of IoT gical d sues, er H-CS PEO3 1 1	in varie esign. nabling E-03(x	technol (vii) PE	ds logies, O4 3	application PEO5 3 3											
CO2 CO3 CO4 CO5 COs CO1 CO2 CO3	applica use: for classify compar areas, a	r Wirel r Wirel re: con and pro CO-PI PEO1 1 2 3	ework. nmunicotocols. EO Ma	chnolog , archite cation c apping	matrix pies and ecture, j halleng Matrix PEO2 3 3 3 3	a for C	ications al and lo curity iss Course P	of IoT gical d sues, er H-CS PEO3 1 1 1	in varie esign. nabling E-03(x	technol (vii) PE	ds logies, O4 3 3	application PEO5 3 3 3 3											
CO3 CO4 CO5 COs CO1 CO2 CO3 CO4	applica use: for classify compar areas, a	r Wirel r Wirel re: con and pro CO-PI PEO1 1 2 3 3	ework, nmunic otocols.	chnolog , archite cation c apping	matrix pies and ecture, j halleng Matrix PEO2 3 3 3 3 3 3	Appl ohysica es, sec	ications al and lo curity iss Course P	of IoT gical d sues, er H-CS PEO3 1 1 1 1 1	in varie esign. nabling E-03(x	technol (vii) PE	ds logies, O4 3 3 3	application PEO5 3 3 3 3 3 3											
CO3 CO4 CO5 COs CO1 CO2 CO3 CO4 CO5	applica use: for classify compar areas, a	r Wirel r Wirel re: con and pro CO-PI PEO1 1 2 3 3 3 3	ework, nmunic otocols.	chnolog , archite cation c apping	matrix pies and ecture, j halleng Matrix PEO2 3 3 3 3 3 3 3 3 3	a for C	ications al and lo curity iss Course P	of IoT gical d sues, er H-CS PEO3 1 1 1 1 1 1	in varie esign. nabling E-03(x	technol (vii) PE 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ds logies, O4 3 3 3 3 3	application PEO5 3 3 3 3 3 3 3											
CO2 CO3 CO4 CO5 COs CO1 CO2 CO3 CO4 CO5 Average	applica use: for classify compar areas, a	r Wirel r Wirel re: con and pro CO-PI PEO1 1 2 3 3 3 2.4	ework. nmunicotocols.	chnolog , archite cation c apping	matrix peco2 3 3 3 3 3 3 3 3 3 3	a for C	ications al and lo curity iss Course P	of IoT gical d sues, er H-CS PEO3 1 1 1 1 1 1 1 1 1	in varie esign. nabling E-03(x	technol technol technol Tec	ds logies, O4 3 3 3 3 3 3 3 3 3	application PEO5 3 3 3 3 3 3 3 3											
CO3 CO4 CO5 COs CO1 CO2 CO3 CO4 CO5 Average	applica use: for classify compar areas, a	r Wirel r Wirel r Wirel re: con and pro CO-PI PEO1 1 2 3 3 3 2.4 CO-P	Princip less Te lework, nmunic otocols EO Ma	chnolog , archite cation c apping	matrix pies and ecture, j halleng Matrix PEO2 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3	for Co	curity iss	of IoT gical d sues, er H-CS PEO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in varie esign. habling E-03(x	vii)	ds logies, O4 3 3 3 3 3 3 3 3 3	application PEO5 3 3 3 3 3 3 3 3											
CO2 CO3 CO4 CO5 COs CO1 CO2 CO3 CO4 CO5 Average COs	applica use: for classify compar areas, a F	r Wirel r Wirel re: con and pro CO-PI PEO1 1 2 3 3 2.4 CO-P PO2	EO Ma	pping PO4	matrix pies and pecture, j halleng Matrix PEO2 3 3 3 3 3 3 3 4 4 4 7 5	for Co	ications al and lo curity iss course P	of IoT gical d sues, er H-CS PEO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in varie esign. habling E-03(x E-03(x)	vii) PC10	ds logies, O4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 9	application PEO5 3 3 3 3 3 3 PO12											
CO2 CO3 CO4 CO5 COs CO1 CO2 CO3 CO4 CO5 Average COs	applica use: for classify compar areas, a F	intons, j r r r y: fram re: cond peol 1 2 3 3 2.4 CO-P PO2	PO Ma	chnolog , archite ation c apping pping M PO4	people and	for Co	ications al and lo curity iss course P	of IoT gical d gues, er H-CS PEO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in varie esign. habling E-03(x E-03(x)	vii) PC10	ds logies, O4 3 3 3 3 3 3 4 9 9011	application PEO5 3 3 3 3 3 3 PO12											
CO2 CO3 CO4 CO5 COs CO1 CO2 CO3 CO4 CO5 Average COs COs CO1	applica use: for classify compar areas, a F PO1	ittons, j r r Wirel y: fram re: con PEO1 1 2 3 3 3 2.4 CO-P PO2 3	PO Ma PO3	pping PO4	people and	for Co	ications al and lo curity iss course P burse PI PO7 3	of IoT gical d gical d gues, er H-CS PEO3 1	<u>in varie</u> esign. habling E-03(x C-03(x) PO9	vii) PC10 2	ds logies, O4 3 3 3 3 3 3 4 PO11 -	application PEO5 3 3 3 3 3 PO12 -											
CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 Average COs CO1 CO2	applica use: for classify compar areas, a F PO1 1 2	ittons, j r r r y: fram re: cond pEO1 1 2 3 3 2.4 CO-P PO2 3 1 1	PO Ma PO3 1	pping N PO4	matrix peco2 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3	for Co PO6	ications al and lo curity iss Course P Durse PI PO7 3 3	of IoT gical d gical d sues, er H-CS PEO3 1 2	<u>in varie</u> esign. habling E-03(x C-03(x PO9 	vii) PC10 2	ds logies, 04 3 3 3 3 3 4 9 9 1 1 -	application PEO5 3 3 3 3 3 PO12											
CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 Average COs CO1 CO2 CO3 CO1 CO2 CO3	applica use: for classify compar areas, a F PO1 1 2 3	ittons, j r r Wirel y: fram re: con itton r itton	PO Ma PO3 1 1 1	pping N PO4 1 3 3	matrix pies and ecture, j halleng Matrix PEO2 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 4 1 1 1 3	for Co PO6 - - -	ications al and lo curity iss Course P Course PI PO7 3 3 3 3	of IoT gical d gical d sues, er H-CS PEO3 1 2 3	<u>in varie</u> esign. habling E-03(x E-03(x PO9 - - - -	vii) PE 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ds logies, O4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	application PEO5 3 3 3 3 3 PO12											
CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 Average COs CO1 CO2 CO3 CO1 CO2 CO3 CO1 CO2 CO3 CO1	applica use: for classify compar areas, a PO1 1 2 3 2	initions, j r r r y: fram re: cond pEO1 1 2 3 3 2.4 CO-P PO2 3 1 1 1 1 1 1 1	PO Ma PO3 1 1 1 1	pping N PO4 1 3 3 3	matrix pecore matrix pecore a a a a a a a a a a a a a a a a a a a	for Co PO6 - - - -	ications al and lo curity iss Course P Durse PI PO7 3 3 3 3 3	of IoT gical d gical d sues, er H-CS PEO3 1 2 3 3	<u>in varie</u> esign. habling E-03(x C-03(x PO9 - - -	vii) PC10 2 2 2 2	ds logies, O4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	application PEO5 3 3 3 3 3 3 PO12											

Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-	
CO-PSO Mapping Matrix for Course PH-CSE-03(xvii)													
COs	PSO	D1	I	PSO2		PSC	3		PSO4			PSO5	
CO1	3			3		3			1			-	
CO2	3		3			3			2			-	
CO3	3		3			3		3			-		
CO4	3		3			3		3				-	
CO5	3		3			3		3			-		
Average	3		3			3		2.4			-		

UNIT I

Fundamentals of IoT: Introduction, Definitions & Characteristics of IoT, IoT Architectures, Physical & Logical Design of IoT, Enabling Technologies in IoT, History of IoT, About Things in IoT, The Identifiers in IoT, About the Internet in IoT, IoT frameworks, IoT and M2M.

UNIT II

Sensors Networks : Definition, Types of Sensors, Types of Actuators, Examples and Working, IoT Development Boards: Arduino IDE and Board Types, RaspberriPi Development Kit, RFID Principles and components, Wireless Sensor Networks: History and Context, The node, Connecting nodes, Networking Nodes, WSN and IoT.

UNIT III

Wireless Technologies for IoT: WPAN Technologies for IoT: IEEE 802.15.4, Zigbee, HART, NFC, Z-Wave, BLE, Bacnet, Modbus. IP Based Protocols for IoT IPv6, 6LowPAN, RPL, REST, AMPQ, CoAP, MQTT. Edge connectivity and protocols

UNIT IV

Data Handling & Analytics: Introduction, Bigdata, Types of data, Characteristics of Big data, Data handling Technologies, Flow of data, Data acquisition, Data Storage, Introduction to Hadoop. Introduction to data Analytics, Types of Data analytics, Local Analytics, Cloud analytics and applications, Applications of IoT, Home Automation, Smart Cities, Energy, Retail Management, Logistics, Agriculture, Health and Lifestyle, Industrial IoT, Legal challenges, IoT design Ethics, IoT in Environmental Protection.

Text Books

- 1. Hakima Chaouchi, "The Internet of Things Connecting Objects to the Web" ISBN: 978-1-84821-140-7, Wiley Publications
- 2. Olivier Hersent, David Boswarthick, and Omar Elloumi, "The Internet of Things: Key Applications and Protocols", Wiley Publications
- 3. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", First Edition, VPT, 2014.
- 4. J. Biron and J. Follett, "Foundational Elements of an IoT Solution", O'Reilly Media, 2016.

- 1. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", Willy Publications
- 2. Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press.

RPE-04 (Research and Publication Ethics)

Credits: 2

Time: 3 Hrs.

Marks: 50

Theory: 30 IA: 20

Note: The question paper will consist of nine questions in all. The first question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions selecting at least one question from each unit.

UNIT-I

Introduction to philosophy: definition, nature and scope, concept, branches, Ethics: definition, moral philosophy, nature of moral judgements and reactions, Ethics with respect to science and research, Intellectual honesty and research integrity, Scientific misconduct: Falsification, Fabrication, and Plagiarism (FFP), Redundant publication: duplicate and overlapping publications, salami slicing, Selective reporting and misrepresentation of data

UNIT-II

Publication ethics: definition, introduction and importance, Best practices standards setting initiatives and guidelines: COPE, WAME, etc., Conflicts of interest, Publication misconduct: definition, concept, problems that lead to unethical behavior and vice versa, types, Violation of publication ethics, authorship and contributorship, Identification of publication misconduct, complaints and appeals, Predatory publishers and journals, Open access publications and initiatives, SHERPA/ROMEO online resource to check publisher copyright & self-archiving policies.

UNIT-III

Software tool to identify predatory publications developed by SPPU, Journal finder/ Journal suggestion tools viz. JANE, Elsevier Journal Finder, Springer Suggester, etc., Subject specific ethical issues, FFP, authorship, Conflicts of interest, Complaints and appeals: examples and fraud from India and abroad, Use of plagiarism software like Turnitin, Ouriginal/Urkund, Viper, iThenticate and other open source software tools

UNIT-IV

Indexing databases; Citation databases: Web of Science, Scopus, Pubmed, ICI etc., Impact Factor of journal as per Journal Citation Reports. SNIP, SJR, IPP: Cite Score, Metrics: h-index, g index, i10 index, altmetrics.

Text Books

- 1. Bird, A. (2006). Philosophy of Science. Routledge.
- 2. MacIntyre, Alasdair (1967) A Short History of Ethics. London.
- 3. P. Chaddah, (2018) Ethics in Competitive Research: Do not get scooped; do not get plagiarized, ISBN:978-9387480865

- National Academy of Sciences, National Academy of Engineering and Institute of Medicine. (2009). On Being Scientist: A Guide to Responsible Conduct in Research: Third Edition. National Academies Press.
- Resnik, D. B. (2011). What is ethics in research & why is it Important. National Institute of Environmental Health Sciences, 1-10.https://www.niehs.nih.gov/research/resources/bioethics/whatis/index.cfm
- 3. Beall, J. (2012). Predatory publishers are corrupting open access. Nature, 489(7415), 179-179. https://doi.org/10.1038/489179a
- 4. Indian National Science Academy (INSA), Ethics in Science Education, Research and Governance (2019). ISBN: 978-81-939482-1-7. http://www.insaindia.res.in/pdf/Ethics Book.pdf